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Abstract
We study the problem of sampling high and infinite dimensional target

measures arising in applications such as conditioned diffusions and inverse
problems. We focus on those that arise from approximating measures on
Hilbert spaces defined via a density with respect to a Gaussian reference
measure. We consider the Metropolis-Hastings algorithm that adds an
accept-reject mechanism to a Markov chain proposal in order to have the
target measure as an ergodic invariant measure. We focus on cases where
the proposal is either a Gaussian random walk (RWM) with covariance
equal to that of the reference measure or an Ornstein-Uhlenbeck proposal
(pCN) for which the reference measure is invariant.

Previous results in terms of scaling and diffusion limits suggested that
the pCN has a convergence rate that is independent of the dimension while
the RWM method has undesirable dimension-dependent behaviour. We
confirm this claim by showing dimension-independent Wasserstein spec-
tral gap for pCN algorithm for a large class of target measures. In our
setting this Wasserstein spectral gap implies an L2-spectral gap. We use
both spectral gaps to show that the ergodic average satisfies a strong law
of large numbers, the central limit theorem and non-asymptotic bounds
on the mean square error, all dimension independent. In contrast we show
that the RWM algorithm applied to the reference measures degenerates
as the dimension tends to infinity.

1 Introduction
The aim of this article is to study the complexity of certain sampling algorithms
in high dimensions. Creating samples from a high dimensional probability distri-
bution is important for Bayesian Inverse Problems [49] and Bayesian Statistics
[32]. In Bayesian nonparametrics [19], which have recently become more and
more important for applications, these are the main tools for extracting infor-
mation from the posterior. Last but not least our results are applicable to a
certain class of conditioned diffusions [23].

The most widely used method for general target measures are Markov chain
Monte Carlo (MCMC) algorithms which run an ergodic Markov chain with the
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target measure as the invariant measure. Under certain conditions the empirical
average of a function f (observable) applied to the steps of the Markov chain
converges to the expectation of this function with respect to the target measure.
The computational cost of such an algorithm is the product of the cost of one
step and the number of steps necessary for a certain level of accuracy. While in
most applications the cost of one step grows with dimensionality, a major result
of this article is to show that under certain conditions an upper bound on the
number of steps which are necessary is independent of the dimension.

For ease of presentation we work on a separable Hilbert space (H, ‖·‖)
equipped with a mean-zero Gaussian reference measure γ with covariance opera-
tor C. Let {ϕn}n∈N be an orthonormal base of eigenvectors of C corresponding to
eigenvalues {λ2

n}n∈N. Thus γ can be written as its Karhunen-Loeve Expansion
(c.f. [1])

γ = L(

∞∑
i=1

λieiξi), where ξi
i.i.d∼ N (0, 1)

where L(·) denotes the law of a random variable. The target measure µ is
assumed to have a density with respect to γ of the form

µ = M exp(−Φ(x))γ. (1.1)

Gaussian measures have the property that there are always many Hilbert spaces
which satisfy γ(H) = 1. We will assume that Φ : H → R is Lipschitz and that
the reference measure γ has the property that γ(H) = 1. For Bayesian problems
this amounts to the choice of prior; for conditioned diffusions it restricts the class
of admissible target measures. With Pm the projection onto the first m basis
elements we consider the following m-dimensional approximations to γ and µ

γm = L(

m∑
i=1

λieiξi)

µm = Mm exp(−Φ(Pmx))γm. (1.2)

The approximation error, namely the difference between µ and µm, is already
well studied ([15, 10] for example) an can be estimated in terms of the closeness
between Φ ◦ Pm and Φ.

In this article we consider Metropolis-Hastings MCMC methods ([36] and
[24]). For an overview of other MCMC methods, which have been developed
and analyzed, consult [43, 33]. The idea of the Metropolis-Hastings algorithm is
to add an independent accept-reject mechanism to a Markov chain proposal in
order to have the target measure as an ergodic invariant measure. We denote by
Q(x, dy) the transition kernel of the underlying Markov chain and with α(x, y)
the acceptance probability for a proposed move from x to y. The transition
kernel of the Metropolis-Hastings algorithm reads

P(x, dz) = Q(x, dz)α(x, z) + δx(dz)

ˆ
(1− α(x, u))Q(x, du) (1.3)
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where α(x, y) is chosen such that P(x, dy) is reversible with respect to µ. Ac-
cording to [50], one considers ν = µ(dx)Q(x, dy) and νT = µ(dy)Q(y, dx) on
a subset where they are mutually absolutely continuous and there one takes
α(x, y) = 1∧r(x, y) with r = dνT

dν ; on the complement of this subset α(x, y) = 0.
A common proposal kernel corresponds to the random walk

Q(x, dy) = L(x+
√

2δξ)

with ξ ∼ γm which leads to the acceptance probability

α(x, y) = 1 ∧
(

Φ(x)− Φ(y) +
1

2
〈x, Cx〉 − 1

2
〈y, Cy〉

)
. (1.4)

Notice that the quadratic forms 1
2 〈x, Cx〉 and

1
2 〈y, Cy〉 are almost surely infi-

nite in H since they correspond to the Cameron-Martin norm of x and y re-
spectively. For this reason the RWM algorithm is not defined on the infinite
dimensional Hilbert space H (see [11] for a discussion) and we will study it only
on m−dimensional approximating spaces. Furthermore, it is intuitive that the
algorithms we study will degenerate in some way as the dimension m increases.
In this article we will demonstrate that the RWM can be considerably improved
upon by using the preconditioned Crank-Nicolson (pCN), which is a well-defined
algorithm on H, and corresponds to

Q(x, dy) = L((1− 2δ)
1
2x+

√
2δξ) (1.5)

α(x, y) = 1 ∧ exp(Φ(x)− Φ(y)) (1.6)

with ξ ∼ γ. The pCN was introduced in [5]. Numerical experiments in [11]
demonstrate its favorable properties in comparison with the RWM algorithm.
Notice that, in contrast to RWM, the acceptance probability is well-defined on
Hilbert space and this fact gives an intuitive explanation for the theoretical
results we derive in this paper in which we develop a theory which explains the
superiority of pCN over RWM. Our main positive results about pCN can be
summarised as (rigorous statement in Theorems 2.14, 2.15, 4.2 and 4.4):

Claim. Suppose Φ and its local Lipschitz constant both satisfy a growth as-
sumption at infinity. Then the pCN algorithm applied to µ(µm)

1. has a unique invariant measure µ (µm);

2. has a Wasserstein spectral gap uniformly in m;

(a) has an L2-spectral gap 1− β uniform in m;

The corresponding sample average Sn(f) = 1
n

n∑
i=1

f(Xi)

4 satisfies a strong law of large numbers and a central limit theorem (CLT)
for a class of locally Lipschitz functionals for every initial condition;
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5 For f ∈ L2
µ

(
L2
µm

)
Sn satisfies a CLT for µ (µm)-almost every initial

condition with asymptotic variance uniformly bounded in m;

6 There is an explicit bound on the mean square error (MSE) between Sn(f)
and µ(f) for certain initial distributions ν.

These positive results about pCN clearly apply for Φ = 0, which corresponds to
the target measure γ and γm respectively; in this case the acceptance probability
of pCN is always one, and the theorems mentioned are simply statements about
a discretely sampled Ornstien-Uhlenbeck (OU) process on H in this case. On
the other hand the RWM algorithm applied to the target measure γm has an
L2
µ spectral that converges to 0 as m → ∞ as fast as any negative power of m

see Theorem 2.17.

While it is a major contribution of this article to verify 1,2,4 and the negative
result for the RWM, 3,5 and 6 are consequences of verifying conditions of known
results.

In addition to the significance of the results themselves for the understanding
of MCMC methods, we would also like to highlight the techniques of proof that
we use. We use recently developed tools for the study of Markov chains on
infinite dimensional spaces [22] that, for many problems, improve significantly on
the machinery that has been used for the study of MCMC methods to date. The
weak Harris theorem makes a Wasserstein spectral verifiable in practice and for
reversible Markov processes it even implies an L2-spectral gap. Previous results
have been formulated in terms of the following three main types of convergence:

1. For a metric d on the space of measures the convergence rate is given
as the decay rate of d(νPn, µ), where ν is the initial distribution of the
Markov chain. The most prominent examples here are convergence in a
(weighted) total variation and in a Wasserstein distance.

2. For the Markov operator P the convergence rate is given as the operator
norm of P on a space of functions from H to R modulo constants. The
most prominent example here is the L2-spectral gap.

3. The (asymptotic) convergence rate of Sn(f) =
∑n
i=1 f(Xi) to µ(f) for a

class of functions f in form of a CLT or a MSE bound.

Between these notions of convergence, there are many fruitful relations, see e.g.
[46]. All these convergence types have been used to study MCMC algorithms.

The first systematic approach to prove L2-spectral gaps for Markov chains
was developed in [31] using the conductance concept due to Cheeger ([9]). These
results were extended and applied to the Metropolis-Hastings algorithm with
uniform proposal and a log-concave target distribution on a bounded convex
subset of Rn in [34]. The consequences of a spectral gap for the ergodic average
in terms of a CLT and the MSE have been investigated in [26, 12] and [46]
respectively and were first brought up in the MCMC literature in [18, 8].
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For finite state Markov chains the spectral gap can be bounded in terms of
quantities associated with its graph [16] and this idea has also been applied to
the Metropolis-Algorithm in [48] and [17].

A different approach using the now called splitting chain technique was in-
dependently developed in [38] and [2] to bound the total variation distance
between the n-step kernel and the invariant measure. Small and petite sets are
used in order to split the trajectory of a Markov chain into independent blocks.
This theory was fully developed in [37] and again adapted and applied to the
Metropolis-Hastings algorithm in [44] resulting in a criterion for geometric er-
godicity

‖P(x, ·)n − µ‖TV ≤ C(x)cn for some c < 1.

Moreover, they also established a criterion for a CLT. Extending this method,
it was also possible to derive rigorous confidence intervals in [29].

In most infinite dimensional settings the splitting chain method cannot be
applied since measures tend to be mutually singular. The method is hence not
well-adapted to the high-dimensional setting. Even Gaussian measures with
the same covariance operator are only equivalent if the difference between their
means lies in the Cameron-Martin space. As a consequence, the discrete time
Ornstein-Uhlenbeck process on a function space is not irreducible in the sense
of [37], i.e. there is no non trivial measure ϕ such that ϕ(A) > 0 implies
P(x,A) > 0 for all x. By inspecting the Metropolis-Hastings transition kernel
(1.3) the pCN algorithm is not irreducible, since if x − y is not an element of
the Cameron-Martin space, each measure in the decomposition for P(x, ·) is
mutually singular to each measure in the same decomposition for P(y, ·). This
may also be shown to be true for the n-step kernel by expressing it as a sum of
densities times Gaussian measures and applying the Feldman-Hajek Theorem
[13].

For these reasons, existing theoretical results concerning RWM and pCN in
high dimensions have been confined to scaling results and derivation of diffusion
limits. In [4] the RWM with a target that is absolutely continuous with respect
to a product measure has been analyzed for its dependence on the dimension.
The proposal distribution is a centered normal random variable with covariance
matrix σnIn. The main result there is that δ has to be chosen as a constant times
a particular negative power of n to prevent the expected acceptance probability
to go to one or zero. In a similar setup it was recently shown [35] that there
is a µ-reversible SPDE limit if the product law is a truncated Karhunen-Loeve
expansion. This SPDE limit suggests that the number of steps necessary for a
certain level of accuracy grows like O(m), because in order to approximate the
SPDE limit on [0, T ] O(m) steps are necessary. A similar result in [41] suggests
that the pCN algorithm only needs O(1) steps.

Uniform contraction in a Wasserstein distance was first applied to MCMC
in [25] in order to get bound on the variance and bias of the sample average of
Lipschitz functionals. We use the weak Harris theorem to verify this contraction
and using the results from [46] non-asymptotic bounds on the sample average
of L2

µ functionals.
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In this paper we substantiate these ideas, by using spectral gaps derived
by applying the weak Harris theory of [22]. Section 2 contains statement of
our main results, namely Theorems 2.9, 2.11 and 2.13 concerning the desir-
able dimension-independence properties of the pCN method, and Theorem 2.16
concerning the undesirable dimension dependence of the RWM method. Sec-
tion 2 starts by specifying the RWM and pCN algorithms as Markov chains,
statement of the weak Harris theorem, and a discussion of the relationship be-
tween exponential convergence in a Wasserstein distance and L2

µ spectral gaps.
Proofs of the theorems from Section 2 are given in Section 3. In Section 4 we
exploit the Wasserstein and L2

µ spectral gaps in order to derive a law of large
numbers (LLN), central limit theorems (CLTs) and mean square error (MSE)
bounds for sample-path ergodic averages of the pCN method, again emphasiz-
ing dimension-independence of the results. We draw some overall conclusions
in Section 5.

Acknowledgement. We thank Feng-Yu Wang for pointing out the connection
betweenWasserstein and L2 spectral gap. Financial support was kindly provided
to MH by EPSRC grant EP/D071593/1, by the Royal Society through a Wolfson
Research Merit Award, and by the Leverhulme Trust through a Philip Lever-
hulme Prize. AMS is grateful to EPSRC and ERC for financial support. SJV
gratefully acknowledges support from an ERC stipend.

2 Main Results
In Section 2.1 we specify the RWM and pCN algorithms and in Section 2.2 we
summarize the weak Harris theorem and present how a Wasserstein spectral gap
implies an L2

µ-spectral gap. In Section 2.3 we give necessary conditions on the
target measure for the pCN algorithm to have a dimension independent spectral
gap in a Wasserstein distance. In Section 2.4 we highlight the downside of the
RWM by giving an example that satisfies our assumption for the pCN algorithm
for which the spectral gap of the RWM algorithm converges to zero as fast as
any negative power of m for m→∞.

2.1 Algorithms
We focus on convergence results for the pCN algorithm (Algorithm 1) that
generates a Markov chain {Xn}n∈N with Xn ∈ H and {Xn

m}n∈N when applied
to a measure µ and µm respectively. The corresponding transition Markov
kernels are called P and Pm respectively. We use the same notation for the
Markov chain generated by the RWM (Algorithm 2). This should not cause
confusion as statements concerning the pCN and RWM algorithms occur in
separate subsections.

6



Algorithm 1 Preconditioned Crank-Nicolson
Initialize X0.
For n ≥ do:

1. Generate ξ ∼ γ and set pXn(ξ) = Xn +
√

2δ ξ.

2. Set

Xn+1 =

{
pXn with probability a(Xn, pXn) = 1 ∧ exp(Φ(x)− Φ(y)

Xn otherwise

Algorithm 2 Random Walk Metropolis
Initialize X0.
For n ≥ do:

1. Generate ξ ∼ γm and set pXn(ξ) = Xn +
√

2δ ξ.

2. Set

Xn+1 =


pXn with probability a(Xn, pXn) =

1 ∧ exp(Φ(x)− Φ(y) + 1
2 〈x, Cx〉 −

1
2 〈y, Cy〉)

Xn otherwise
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2.2 Preliminaries
Here we introduce Lyapunov functions, Wasserstein distances, d-small sets and
d-contracting Markov kernels in order to state a weak Harris theorem recently
proved in [22]. We use this theorem to prove our main results. By weakening
the notion of a small set, this theorem gives a sufficient condition for exponential
convergence in a Wasserstein distance. We explain how this in turn implies an
L2-spectral gap which is a major reason for the importance of the weak Harris
theorem.

2.2.1 Weak Harris Theorem

Definition 2.1. Given a Polish space E, a function d : E × E → R+ is a
distance-like function if it is symmetric, lower semi-continuous and d(x, y) = 0
is equivalent to x = y.

This induces the 1-Wasserstein “distance” associated with d for measures
ν1, ν2

d(ν1, ν2) = inf
π∈Γ(ν1,ν2)

ˆ
E×E

d(x, y)π(dx, dy) (2.1)

where Γ(ν1, ν2) is the set of couplings of ν1 and ν2 (all measures on E×E with
marginals ν1 and ν2). If d is a metric the Monge-Kantorovich duality states

d(ν1, ν2) = sup
‖f‖Lip(d)=1

ˆ
fdν1 −

ˆ
fdν2.

We use the same notation for the distance and the associated Wasserstein
distance; we hope that this does not lead to any confusion.

Definition 2.2. A Markov kernel P is d-contracting if there is 0 < c < 1 such
that d(x, y) < 1 implies

d(P(x, ·),P(y, ·)) ≤ c · d(x, y).

Definition 2.3. Let P be a Markov operator over a Polish space E endowed
with a distance-like function d : E×E→ [0, 1]. A set S ⊂ E is said to be d-small
if there exists 0 < s < 1 such that for every x, y ∈ S

d(P(x, ·),P(y, ·)) ≤ s.

The d-Wasserstein distance associated with d(x, y) = χ{x 6=y}(x, y) coincides
with the total variation distance. If S is a small set (c.f. [37]) there is a
probability measure ν such that P can be decomposed into

P(x, dz) = sP̃(x, dz) + (1− s)ν(dz) for x ∈ S,

which implies dTV (P(x, ·),P(y, ·)) ≤ s hence S is d-small, too.
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Definition 2.4. A Markov kernel P has a Wasserstein spectral gap if there is
a λ > 0 and a C > 0 such that

d(ν1Pn, ν2Pn) ≤ C exp(−λn)d(ν1, ν2) for all n ∈ N.

Definition 2.5. V is a Lyapunov function for the Markov operator P if there
exist K > 0 and 0 ≤ l < 1 such that

PnV (x) ≤ lnV (x) +K for all x ∈ E and all n ∈ N. (2.2)

Remark. Sometimes referred to as a drift condition because it implies that
E(V (Xn+1)) is smaller than V (Xn) if V (Xn) ≥ 1

1−lK.

Proposition 2.6. (Weak Harris Theorem [22]) Let P be a Markov kernel
over a Polish space E. Assume that:

1. P has a Lyapunov function V such that (2.2) holds;

2. P is d-contracting for a distance-like function d : E×E→ [0, 1];

3. the set S = {x ∈ E : V (x) ≤ 4K} is d-small.

Then there exists ñ such that for any ν1, ν2 be probability measures on E we
have

d̃(ν1P ñ, ν2P ñ) ≤ 1

2
d̃(ν1, ν2)

where d̃(x, y) =
√
d(x, y)(1 + V (x) + V (y)) and ñ(l,K, c, s) is increasing in l,

K,c and s. Moreover, if there exists a complete metric d0 on E such that
d0 ≤

√
d and such that Pt is Feller on E, then there is a unique invariant

measure µ for Pt.

Remark. For ν2 = µ we obtain the convergence rate to the invariant measure.

2.2.2 Wasserstein implies L2-spectral Gap

In this section we explain why a Wasserstein spectral gap under mild assumption
implies an L2

µ- spectral gap.

Definition 2.7. (L2
µ-spectral gap) A Markov operator P with invariant measure

µ has an L2
µ-spectral gap 1− β if for L2

0 = {f ∈ L2
µ | µ(f) = 0}

β = ‖P‖L2
0→L2

0
= sup

‖Pnf − µ(f)‖2
‖f − µ(f)‖2

< 1.

The following proposition is due to F.-Y. Wang and is a discrete-time version
of Theorem 2.1(2) [51]. It was also rediscovered in [39]. The proof given below
is from private communication with F.-Y. Wang and is presented because of
its beauty and the tremendous consequences in combination with weak Harris
theorem.
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Proposition 2.8. ([45] Private Communication) Let P be a Markov transition
operator that is reversible with respect to µ and suppose Lip(δ̃) ∩ L∞µ ∩ L2

µ is
dense in L2

µ for some C, then

δ̃((Ptf)µ, µ) ≤ C exp(−λn)δ̃(fµ, µ)

implies the L2
µ-spectral gap

‖Pnf − µ(f)‖22 ≤ ‖f − µ(f)‖22 exp(−λn). (2.3)

Proof. Let 0 ≤ f ∈ Lip ∩ L∞(µ) with µ(f) = 1 and π be the optimal cou-
pling between (P2nf)µ and µ for the Wasserstein distance associated with d.
Reversibility implies

´
(Pnf)2dµ =

´
(P2nf)fdµ which leads to

‖Pnf − µ(f)‖22 = µ
(
(Pnf)2

)
− 1 =

ˆ
(f(x)− f(y))dπ

≤ Lip(f)

ˆ
δ̃(x, y)dπ ≤ Lip(f)δ̃(P2nfµ, µ)

= Lip(f)δ̃((fµ)P2n, µ) ≤ CLip(f) exp(−2λn).

Since the above extends to a · f + b for general f ∈ L∞ ∩ Lip(δ̃), we note
that

‖Ptf − µ(f)‖22 ≤ 2
∥∥Ptf+ − µ(f+)

∥∥2

2
+ 2

∥∥Ptf− − µ(f−)
∥∥2

2
.

By Lemma 2.9, the bound (2.3) holds for functions in Lip ∩ L∞(µ), hence
the result follows by taking limits of such functions.

Lemma 2.9. Let P be a Markov transition operator that is reversible with
respect to µ. If for some f ∈ L2(µ) and constants C(f) and λ > 0

‖Pnf − µ(f)‖22 ≤ C(f) exp(−λn),

then for all n ∈ N

‖Pnf − µ(f)‖22 ≤ ‖f − µ(f)‖22 exp(−λn).

Proof. Without loss of generality we assume µ(f̂2) = 1 where f̂ = f − µ(f).
Applying the spectral theorem to P yields the existence of a unitary map
U : L2(µ) 7→ L2(X, ν) such that UPU−1 is a multiplication operator by m.
Moreover, µ(f̂2) = 1 implies that (Uf̂)2ν is a probability measure such that for
k ∈ Nˆ

(Pnf̂(x))2dµ =

ˆ
m(x)2n(Uf̂)2(x)dν =

ˆ
m(x)(2n+k) 2n

2n+k d(Uf̂)2ν

≤
(ˆ

m(x)2n+kd(Uf̂)2ν

) 2n
2n+k

≤ C
2n

2n+k exp(−λ2n),

letting k →∞ yields the required claim.
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2.3 Dimension-Independent Spectral Gaps for RWM
Using the weak Harris theorem we give necessary conditions on µ (see (1.1))
in terms of regularity and growth of Φ to have a uniform spectral gap in a
Wasserstein distance for Xn and Xn

m. We need Φ to be at least locally Lipschitz;
the case where it is globally Lipschitz is more straightforward and is presented
first. Using the notation ρ = 1 − (1 − 2δ)

1
2 we can express the proposal of the

pCN algorithm as
pXn(ξ) = (1− ρ)Xn +

√
2δ ξ.

The mean of the proposal (1− ρ)Xn suggests that we can prove that f(‖·‖)
is a Lyapunov function for certain f and that P is d-contracting (for a suitable
metric) if we have a lower bound on the probability of Xn+1 being in a ball
around the mean. In fact, our assumptions are stronger since we assume a
uniform lower bound on P(px is accepted|px = z) for z in Br(‖x‖) ((1− ρ)x).

Assumption 2.10. There is R > 0 and a function r : R+ 7→ R+ satisfying
r(s) ≤ ρ

2s for all |s| ≥ R such that for x ∈ BR(0)c

inf
z∈Br(‖x‖)((1−ρ)x)

− Φ(z) + Φ(x) > αl. (2.4)

Assumption 2.11. Let Φ in (1.1) have global Lipschitz constant L and assume
that exp(−Φ) is γ-integrable.

Theorem 2.12. Let Assumption 2.10 and 2.11 be satisfied with either

1. r(‖x‖) = r ‖x‖a where r ∈ R+ for any a ∈ ( 1
2 , 1) then we consider V =

‖x‖i with i ∈ N or V = exp(v ‖x‖), or

2. r(‖x‖) = r ∈ R for r ∈ R+ then we take V = ‖x‖i with i ∈ N.

Then µ (µm) is the unique invariant measure for the Markov chain associated
with the pCN algorithm applied to µ (µm). Moreover, define

d̃(x, y) =
√
d(x, y)(1 + V (x) + V (y)) with

d(x, y) = 1 ∧ ‖x− y‖
ε

.

Then for ε small enough there is an ñ such that for all ν1, ν2 probability measures
on H and on PmH respectively and for all m ∈ N

d̃(ν1P ñ, ν2P ñ) ≤ 1

2
d̃(ν1, ν2),

d̃(ν1P ñm, ν2P ñm) ≤ 1

2
d̃(ν1, ν2).

Proof. The conditions of weak Harris theorem (Proposition 2.6) are satisfied by
Lemmas 3.3, 3.4 and 3.5 and the uniqueness follows by Proposition 3.9.
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A key step in the proof is to verify the d-contraction. In order to get an
upper bound on d(P(x, ·),P(y, ·)) (see (2.1)) we choose a particular coupling
between the algorithm started at x and y and distinguish between the cases
when both proposals are accepted, both are rejected and only one is accepted.
The case when only one of them accepts is the most difficult to tackle. By
choosing d = 1 ∧ ‖x−y‖ε with ε small, it turns out that enough the Lipschitz
constant of α(x, y) can be brought under control.

By changing the distance function d we can also handle the locally Lipschitz
case provided that the local Lipschitz constant does not grow too fast.

Assumption 2.13. Let exp(−Φ) be integrable with respect to γ and assume
that for any κ > 0 there is an Mκ such that

φ(r) = sup
x 6=y∈Br(0)

|Φ(x)− Φ(y)|
‖x− y‖

≤Mκe
κr.

Theorem 2.14. Let Assumption 2.10 and 2.13 be satisfied with r(‖x‖) = r ‖x‖a

with r ∈ R, a ∈ ( 1
2 , 1) and either V = ‖x‖i with i ∈ N or V = exp(v ‖x‖).

Then µ (µm) is the unique invariant measure for the Markov chain associated
with the pCN algorithm applied to µ (µm).

For A(T, x, y) := {ψ ∈ C1([0, T ],H), ψ(0) = x, ψ(T ) = y, ‖ψ̇‖ = 1}, d̃ as
above with

d(x, y) = 1 ∧ inf
T,ψ∈A(T,x,y)

1

ε

ˆ T

0

exp(η ‖ψ‖)dt

and η andε small enough there is an ñ such that for all ν1, ν2 probability measures
on H and on PmH respectively and m ∈ N

d̃(ν1P ñ, ν2P ñ) ≤ 1

2
d̃(ν1, ν2)

d̃(ν1P ñm, ν2P ñm) ≤ 1

2
d̃(ν1, ν2).

Remark. A Wasserstein spectral gap for the ñ-step transition kernel and an
estimate of the form

d(P(x, ·),P(y, ·)) ≤ Cd(x, y) (2.5)

implies a spectral gap for the one-step Kernel. Using that V is a Lyapunov
function and P is d̄ contracting a straightforward calculation shows (2.5).

Proof. This time Lemmas 3.3, 3.7 and 3.8 verify the conditions of the weak
Harris theorem (Proposition 2.6) and Proposition 3.9 yields again the unique-
ness.

Remark. Our arguments work for δ ∈ (0, 1
2 ]; for δ = 1

2 Assumption 2.10 degen-
erates to

sup
h∈H

Φ(h)− inf
h∈H

Φ(h) <∞.

In this case P(x, ·) and P(y, ·) are not mutually singular any more and the
theory of Meyn and Tweedie [37] applies.
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In order to get the same lower bound for the L2
µ-spectral gap we just have

to verify that Lip(δ̃) ∩ L∞µ ∩ L2
µ is dense in L2

µ.

Theorem 2.15. If the conditions of Theorem 2.12 or 2.14 are satisfied, then
we have the same lower bound on the L2

µ-spectral gap of P and Pm uniformly
in m.

Proof. By Proposition 2.8 we only have to show that Lip(d̃) ∩ L∞(µ) is dense
in L2(H,B, µ).

By Lemma 4.1 and 4.3 Lip(‖·‖) ⊆ Lip(d̃) hence it is enough to show that
Lip(‖·‖)∩L∞(µ) is dense in L2(H,B, µ). Suppose not then there is 0 6= g ∈ L2(µ)
such that ˆ

fgdµ = 0 for all f ∈ Lip ∩ L∞(µ).

Since all measures on a separable Banach space equipped with the Borel σ-
algreba are characterised by their characteristic functional (Bochner’s theorem
e.g. [7]), in particular they are characterised by bounded Lipschitz functions
with respect to to ‖·‖. Hence gdµ is the zero measure so that g ≡ 0 in L2

µ.

2.4 Dimension-Dependent Spectral Gaps for RWM
In order to prove negative results on the spectral gap is suffices to consider a par-
ticular case, and the analysis is made relatively straightforward by considering
the case Φ = 0 so that our target measure is µm, and by choosing a particu-
lar covariance operator. In this setting Theorem 2.15 shows that pCN has an
m−independent L2

µ spectral gap; in contrast we will now show that the spectral
gap for RWM degenerates as m grows, on a specific example. We consider the
family of measures µm on the scale of Hilbert spaces and then into (2.6). So far
we have shown convergence results for the pCN, so subsequently we present an
example where these results apply but the spectral gap of the RWM goes to 0
as m tends to infinity. We consider the target measures µ on

Hσm :=

{
x| ‖x‖σ =

m∑
i=1

i2σx2
i <∞

}
with 0 < σ < 1

2 given by

µm = γm = L

(
m∑
i=1

1

i
ξiei

)
ξ

i.i.d∼ N (0, 1). (2.6)

In the setting of (1.1) this corresponds to Φ = 0. Hence the assumptions of
Theorem 2.14 are satisfied and we obtain a uniform lower bound on the L2

µ-
spectral gap for the pCN. For the RWM algorithm we show that the spectral

13



gap converges to zero faster than any negative power of m if we scale δ = sm−a

for any a ∈ [0, 1).
Using the notion of conductance

C = inf
µ(A)≤ 1

2

´
A
P(x,Ac)dµ(x)

µ(A)
, (2.7)

we obtain an upper bound on the spectral gap by Cheeger’s inequality (c.f.
[31, 48])

C2

2
≤ 1− β ≤ 2C. (2.8)

For the Metropolis-Hastings algorithm we can use α(x) =
´
α(x, y)Q(x, dy)

to bound C.

Proposition 2.16. Let P be a Metropolis-Hastings transition kernel for a target
measure µ with acceptance probability α(x, y). For any set B with µ(B) ≤ 1

2 ,
the spectral gap can be bounded by

1− β ≤ 2 sup
x∈B

α(x).

Proof. The algorithm can only move from B to Bc if it accepts the move. Hence

P(x,Bc) ≤ α(x).

Since this yields the bound

C = inf
µ(A)≤ 1

2

´
A
P(x,Ac)dµ(x)

µ(A)
≤
´
B
α(x)dµ(x)

µ(B)
≤ supα(x)

x∈B
,

the claim follows from Cheeger’s inequality.

Theorem 2.17. Let Pm be the Markov kernel and α be the acceptance proba-
bility associated with the RWM algorithm applied to µm as in (2.6).

1. For δm ∼ m−a, a ∈ [0, 1) and any p there is a K(p, a) such that the
spectral gap of Pm satisfies

1− βm ≤ K(p, a)m−p.

2. For δm ∼ m−a, a ∈ [1,∞) there is a K(a) such that the spectral gap of
Pm satisfies

1− βm ≤ K(a)m−
a
2 .

Proof. For the first part we work on the space Hσ with σ ∈ [0, 1
2 ) and σ is

determined later. We choose Br(0) such that µ (Br(0)) ≤ 1
4 and by (3.1) we

know that µm (Bmr (0)) is decreasing towards µ (Br(0)). Hence for all m larger
than some M we know that µ (Bmr (0)) ≤ 1

2 . In order to apply Proposition 2.16,

14



we have to get an upper bound on α(x) on Bmr (0). Thus we use u∧ v ≤ uλv1−λ

to bound

α(x, y) = 1 ∧ exp

(
−1

2

m∑
i=1

i2(y2
i − x2

i )

)
≤ exp

(
−1

2

m∑
i=1

i2(y2
i − x2

i )λ

)
.

Using this inequality, we can find an upper bound on the acceptance probability

α(x) =

ˆ
α(x, y)Q(x, dy) ≤

ˆ
m!

(4δπ)
m
2

exp

(
−1

2

m∑
i=1

i2
[
(y2
i − x2

i )λ+
(xi − yi)2

2δ

])
dy.

Completing the square and using the normalisation constant yields

α(x) ≤
ˆ

m!

(4δπ)
m
2

exp

(
−1

2

m∑
i=1

i2

[
(λ+

1

2δ
)

(
yi −

xi
2δλ+ 1

)2

− 2δλ2x2
i

(2δλ+ 1)

])
dy

≤ (1 + 2λδ)−
m
2 exp

(
m∑
i=1

δλ2

(2δλ+ 1)
i2x2

i

)
.

For x ∈ Bmr (0) in Hσ, using δ = m−a and setting λ = m−b

α(x) ≤ (1 + 2m−(a+b))−
m
2 exp

(
rm2−2σ−a−2b

3

)
.

In order to get decay from the first factor we need a + b < 1 and to prevent
growth from the second a + 2b > 2 − σ which corresponds to a + 2b > 1 for σ
sufficiently close to 1

2 . This can be satisfied with b = 2(1−a)
3 and σ = 2+a

6 < 1
2 .

In this case the first factor decays faster than any negative power of m since

(1 + 2m−(a+b))−
m
2 = exp

(
−m

2
log(1 + 2m−(a+b))

)
≤ exp(−Cm1−(a+b)).

For the second part of the poof we use α(x, y) ≤ 1 and A = {x ∈ Rn|x1 ≥ 0},
which by symmetry satisfies γm(A) = 1

2 , to bound the conductance

C

2
≤
ˆ

A

P (x,Ac)dµ ≤
ˆ

A

ˆ

Ac

α(x, y)n!2

(2π)n(2δ)
n
2

exp

(
−1

2

m∑
i=1

i2(x2
i + (xi − yi)2/(2δ)

)
dxdy

≤
ˆ ∞

0

ˆ 0

−∞

exp(− 1
2

(y1−x1)2

2δ )

2π
√

2δ
dy1 exp

(
−1

2
x2

1

)
dx1

=

ˆ ∞
0

ˆ − x1√
2δ

−∞

exp(− 1
2z

2)

2π
dy1 exp

(
−1

2
x2

1

)
dx1.

Combining Fernique’s theorem and Markov’s inequality (Lemma A.2) yields

C ≤ K
ˆ ∞

0

exp(−1

2
(
δ + 1

δ
)x2

1)dx ≤ K
√

2π
δ

δ + 1
≤ K̃m− a2 ,

so that the claim follows again from Cheeger’s inequality.
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3 Spectral Gap: Proofs
We check the three conditions of the weak Harris theorem (Proposition 2.6) for
globally and locally Lipschitz Φ (see (1.1)) in Sections 3.1 and 3.2 respectively.
For each condition we use the following lemma for the dependence of constants
l,K, c and s in the weak Harris theorem on m. This allows us to conclude that
there is ñ(m) ≤ ñ such that

d̃(ν1P ñ, ν2P ñ) ≤ 1

2
d̃(ν1, ν2)

d̃(ν1P ñ(m)
m , ν2P ñ(m)

m ) ≤ 1

2
d̃(ν1, ν2)

for all measures ν1, ν2 measures on H and PmH respectively.
Replacing r(s) ∧ ρ

2s only weakens the condition (2.4) so we can and will
assume that r(s) ≤ ρs/2.

Lemma 3.1. Let f : R→ R be monotone increasing, then
ˆ
f(‖ξ‖)dγm(ξ) ≤

ˆ
f(‖ξ‖)dγ(ξ)

and in particular

γm(BR(0)) ≥ γ(BR(0)). (3.1)

Proof. The truncated Karhunen-Loeve expansion relates γm and γ and yields
m∑
i=1

λiξ
2
i ≤

∞∑
i=1

λiξ
2
i .

Hence the result follows by monotonicity of the integral and f

ˆ
f(‖ξ‖)dγm(ξ) = E(

√√√√f(

m∑
i=1

λiξ2
i )) ≤ E(

√√√√f(

∞∑
i=1

λiξ2
i )) =

ˆ
f(‖ξ‖)dγ(ξ).

This yields (3.1) by inserting f = χBR(0)c .

We conclude this section by showing µ respectively µm are the unique in-
variant measure for P respectively Pm.

3.1 Global log-Lipschitz density
In this section we will prove Theorem 2.12 by checking the three conditions of
the weak Harris theorem for

d(x, y) = 1 ∧ ‖x− y‖
ε

. (3.2)
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3.1.1 Lyapunov Functions

Under Assumption 2.10 we show the existence of a Lyapunov function V . This
relies on the decay of V on Br(‖x‖) ((1− ρ)x) and the fact that probability of
the next step of the algorithm lying in that ball can be bounded below by the
Fernique’s theorem which we recall here

Proposition 3.2. (Fernique’s theorem see e.g. [6, 13, 20]) Let γ = N (m, C)
be a Gaussian measure on a Banach space, then for β small enoughˆ

X

exp(β ‖u‖2)dγ(u) = Fβ <∞.

Moreover, to deal with a proposals outside Br(‖x‖) ((1− ρ)x) we use

Proposition. A.1 (Appendix) For small enough β and α ∈ R there is a constant
Cα.β such that

ˆ

{‖u‖≥K}

exp(α ‖u‖)dγ(u) ≤ Cα,βe−βK
2+αK .

Lemma 3.3. Suppose Assumption 2.10 is satisfied with either:

1. r(‖x‖) = r ∈ R; or

2. r(‖x‖) = r‖x‖a), κ > 0 and a ∈ ( 1
2 , 1).

Then the function V (x) = ‖x‖i with i ∈ N in the first case and additionally
V (x) = exp

(
`‖x‖

)
in the second case, are Lyapunov functions for both P and

Pm, with constants l and K uniform in m.

Proof. In both cases we choose R as in Assumption 2.10 set

sup
x∈BR(0)

PV (x) ≤ sup
x∈BR(0)

ˆ (
‖x‖+

√
2δ ‖ξ‖

)i
dγ(ξ) ≤ Ri + C =: K1 <∞

by Fernique’s theorem. Now let x ∈ BR(0)c, then there is 0 < l̃ < 1 such that

supV (y)
y∈Br(‖x‖)((1−ρ)x)

≤ l̃V (x). (3.3)

We denote by A = {ω|
√

2δ ‖ξ‖ ≤ r(‖x‖)} the event that the proposal lies in
a ball with a lower bound acceptance probability due to Assumption 2.10 to
bound

PV ≤ P(A)
[
P(accept|A)l̃V (x) + P(reject|A)V (x)

]
+ E(V (px) ∨ V (x);Ac)

≤ P(A)
[
(1− P(accept|A)(1− l̃)

]
V (x) + E(V (px) ∨ V (x);Ac)

≤ θP(A)V (x) + E(V (px) ∨ V (x);Ac)
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Figure 1: Contraction

for some θ < 1. It remains to consider E(V (px)∨V (x);Ac) where the differences
will arise between cases 1 and 2. For the first case we have by Fernique’s theorem

E(V (px) ∨ V (x);Ac) ≤
ˆ
√

2δ‖ξ‖≥c
‖x‖i ∨

(
(1− ρ) ‖x‖+

√
2δ ‖ξ‖)

)
idγ(ξ)

≤
ˆ
‖ξ‖≥ c√

2δ

(
‖x‖i +K ‖ξ‖p

)
dγ(ξ) ≤ P(Ac)V (x) +K2

Since a ball around the mean of a Gaussian always has positive mass (The-
orem 3.6.1 in [6]) we note

PV ≤ V (x)(P(A)θ + P(Ac)) +K2 ≤ lV +K2.

For the second case we estimate

E(V (px) ∨ V (x);Ac) ≤ Mv

ˆ
‖η‖>r‖x‖a

ev(‖x‖+
√

2δ‖ξ‖)dγ(ξ).

The right hand side above is uniformly bounded in x ∈ BR(0)c by some K2 due
to Proposition A.1. Hence in both cases there is an l < 1 such that

PV (x) ≤ lV (x) + max(K1,K2) ∀x.

For them-dimensional approximation the probability of the event A is larger
by Lemma 3.1 and P(accept|A) has the same lower bound and therefore l(m) is
smaller than l. Similarly Ki(m) is smaller then Ki by Lemma 3.1.

3.1.2 The d-Contraction

In this section we show that P is d-contracting for d(x, y) = 1 ∧ ‖x−y‖ε by
bounding d(P(x, ·),P(y, ·)) (see (2.1)) with a particular coupling. For x and y
we choose the same noise ξ giving rise to the proposals px(ξ) and py(ξ) and the
same uniform random variable for acceptance. Subsequently we will refer to
this coupling as the basic coupling and bound the expectation of d under this
coupling by inspecting the following cases:
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1. The proposals for the algorithm started at x and y are both accepted.

2. Both proposals are rejected.

3. One of the proposals is accepted and the other rejected.

Lemma 3.4. If Φ in (1.1) satisfies Assumption 2.10 and 2.11, then P and Pm
are d-contracting for d as in (3.2) with a contraction constant uniform in m.

Proof. By Definition 2.2 we only need to consider x and y such that d(x, y) < 1,
which implies ‖x− y‖ < ε. Later we will choose ε � 1 hence if ‖x− y‖ < ε
then either x, y ∈ BR(0) or x, y ∈ Bc

R̃
(0) with R̃ = R− 1, and we will treat the

two cases separately. We assume without loss of generality ‖y‖ ≥ ‖x‖.
For x, y ∈ BR(0) and A = {ω|

√
2δ ‖ξ‖ ≤ R} the basic coupling yields

d(P(x, ·),P(y, ·)) ≤ P(A) [P(both accept|A)(1− ρ)d(x, y)+

P (both reject|A)d(x, y))] + P(Ac)d(x, y) + (3.4)ˆ
H
|α(x, px)(ξ)− α(y, py)(ξ)| dγ(ξ)

where the last term bounds the case that only one of the proposals is accepted.
Using the bound P(both reject|A) ≤ 1 − P(both accept|A) yields a non-trivial
convex combination of d and (1 − ρ)d, since the probability P(both accept|A)
is bounded below by exp(− sup{Φ(z)| ‖z‖ ≤ 2R} + inf{Φ(z)| ‖z‖ ≤ 2R}) due
to (1.5). The first two summands in (3.4) form again a non-trivial convex
combination, since P(A) > 0, so that there is c̃ < 1 with

d(P(x, ·),P(y, ·)) ≤ c̃d(x, y) +

ˆ
H
|α(x, px)(ξ)− α(y, py)(ξ)| dγ(ξ).

Note that c̃ is independent of ε. For the last term we use that 1 ∧ exp(·) has
Lipschitz constant 1
ˆ
X

|α(x, px)(ξ)− α(y, py)(ξ)| dγ(ξ) ≤
ˆ
|Φ(px)− Φ(py)|+ |Φ(x)− Φ(y)| dγ(ξ)

≤ 2L |x− y| ≤ 2Lεd(x, y)

which yields an overall contraction for ε small enough.
Similarly we get for x, y ∈ BR̃(0)c and B = {ω|

√
2δ ‖ζ‖ ≤ r(‖x‖ ∧ ‖y‖)}

d(P(x, ·),P(y, ·)) ≤ P(B)(P(both accept|B)(1− ρ) + P(both reject|B))d(x, y)

P(Bc)d(x, y) +

ˆ
H
|α(x, px)(ξ)− α(y, py)(ξ)| dγ(ξ).

The lower bound for P(both accept|B) is this time due to Assumption 2.10.
All occurring ball probabilities are larger in the m-dimensional approxima-

tion due to Lemma 3.1 and the acceptance probability is larger since inf and sup
are applied to smaller sets, thus the contraction constant is uniform in m.
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3.1.3 The d-Smallness

The d-smallness of the level sets of V is achieved by replacing the Markov kernel
by the n-step one. This preserves the d-contraction and the Lyapunov function.
The variable n is chosen large enough so that if the algorithms started at x and
y both accept n times in a row d drops below 1

2 , hence

d(Pn(x, ·),Pn(y, ·)) ≤ 1− 1

2
P(accept n-times).

Remark. It is necessary to replace the one step Markov kernel with the n-step
which can be seen by considering the Wiener measure on (C([0, 1]), ‖·‖∞) and
Φ = 0 (our theory also applies to Banach spaces see Section (5)). For the
constant zero path ψ and

φn(x) =

{
nx x ≤ 1/n

1 x ≥ 1/n

‖ψ − φn‖∞ = 1 but the transition to a common ε neighborhood using the pro-
posal (1.5) converges to zero as n→∞.

Lemma 3.5. If S is bounded, then there is an n and 0 < s < 1 such that for
all x, y ∈ S, m ∈ N and for d as in (3.2)

d (Pnm(x, ·),Pnm(y, ·)) ≤ s and d (Pn(x, ·),Pn(y, ·)) ≤ s .

Proof. In order to get an upper bound for d (Pn(x, ·),Pn(y, ·)) we choose the
basic coupling (see Section 3.1.2) as before. Let RS be such that S ⊂ BRS (0)
and B be the event, that both instances of the algorithm accept n times in a
row. In the event of B we have using (3.2)

d(Xn, Yn) ≤ 1

ε
‖Xn − Yn‖ ≤

1

ε
(1− ρ)n ‖X0 − Y0‖ ≤

1

ε
(1− ρ)ndiam S ≤ 1

2

which implies that if X0 and Y0 are in S then d(Xn, Yn) ≤ 1
2 , hence

d(Pn(x, ·),Pn(y, ·)) ≤ P(B)
1

2
+ (1− P(B)) · 1 < 1

We write ξi for the noise in the i-th step and bound

P(B) ≥ P
(∥∥∥√2δξi

∥∥∥ ≤ R

n
i = 1 . . . n

)
P
(
both accept n times |

∥∥ξi∥∥ ≤ R

n

)
≥ P(‖ζ‖ ≤ R

n
)n exp

(
− sup
z∈B2R(0)

Φ(z) + inf
z∈B2R(0)

Φ(z)

)n
> 0,

uniformly for all X0, Y0 ∈ BR(0). For the m-dimensional approximation the
lower bound exceeds that in the infinite dimensional case due to Lemma 3.1
and the fact that

− sup
z∈B2R(0)

Φ(z) + inf
z∈B2R(0)

Φ(z) ≤ − sup
z∈B2R(0)

Φ(Pnz) + inf
z∈B2R(0)

Φ(Pnz)
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so that the claim follows.

3.2 Local log-Lipschitz density
Now we allow the local Lipschitz constant

φ(r) = sup
x 6=y∈Br(0)

|Φ(x)− Φ(y)|
‖x− y‖

to grow in r. In order to deal with the situation where only one proposal is
accepted, in proving P is d-contracting, we choose d in a way such that two
points far out have to be closer in ‖·‖H in order to be considered “close” i.e.
d(x, y) < 1. This is inspired by constructions in [21, 22]. Setting

A(T, x, y) := {ψ ∈ C1([0, T ],H), ψ(0) = x, ψ(T ) = y, ‖ψ̇‖ = 1},

we define metrics d and d̄ by

d(x, y) = 1 ∧ d̄(x, y) d̄(x, y) = inf
T,ψ∈A(T,x,y)

1
ε

´ T
0

exp(η ‖ψ‖)dt, (3.5)

where ε and η i s chosen along the way depending on Φ and γ. The situation
is different from before because even in the case “both accept” the distance can
increase because of the weight. In order to control this we note

Lemma 3.6. Let ψ be a path connecting x, y then for d̄ as in (3.5)

1. 1
ε

´ T
0

exp(η ‖ψ‖)dt < 1 implies T ≤ J := ε exp (−η(‖x‖ ∨ ‖y‖ − ε) ∨ 0) ≤
ε.

2. d̄(x, y) ≤ ‖x−y‖ε exp (η(‖x‖ ∨ ‖y‖)) and for d̄ < 1

‖x− y‖
ε

exp (η(‖x‖ ∨ ‖y‖ − J) ∨ 0) ≤ d̄(x, y)

3. For d̄ < 1 we have

d̄(px, py)

d̄(x, y)
≤ (1− 2δ)

1
2 e−ηρ(‖x‖∨‖y‖+η(‖√2δξ‖+J).

Proof. For the first statement, observe that

ε ≥
ˆ T

0

eη|‖x‖∨‖y‖−t|dt ≥ Teη(‖x‖∨‖y‖−T )∨0) ≥ Teη(‖x‖∨‖y‖−ε)∨0).
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For the second part we set ψ to be the line connecting x and y to get the upper
bound and for the lower bound we use ‖ψ‖ ≥ (‖x‖ ∨ ‖y‖ − J)∨ 0 from the first
part combined with the fact that T ≤ ε. Using 2. we get

d̄(px, py) ≤ 1

ε
(1− 2δ)

1
2 ‖x− y‖ eη[(‖x‖∨‖y‖)−ρ(‖x‖∨‖y‖)+

√
2δ‖ξ‖]

≤ (1− 2δ)
1
2 eη[−ρ(‖x‖∨‖y‖)+

√
2δ‖ξ‖+J] 1

ε
‖x− y‖ eη(‖x‖∨‖y‖−J)

≤ (1− 2δ)
1
2 eη[−ρ(‖x‖∨‖y‖)+

√
2δ‖ξ‖+J]d̄(x, y),

which is precisely the required bound.

3.2.1 Lyapunov Functions

This condition neither depends on the distance function d nor on the Lipschitz
properties of Φ hence Lemma 3.3 applies.

3.2.2 The d-Contraction

Lemma 3.7. If Φ satisfies Assumption 2.10 and 2.13 then P and Pm are d-
contracting for d as in (3.5) with a contraction constant uniform in m.

Proof. First suppose x, y ∈ BR(0) with d(x, y) < 1 and denote the event A ={
ω| ‖ξ‖ ≤ 2R√

2δ

}
. We will first choose R large then η small and at last ε small.

We have

d(P(x, ·),P(y, ·)) ≤ P(A) [P(both accept|A)(1− ρ̃)d(x, y) (3.6)
+ [P(both reject|A)d(x, y)]

+E((α(x, px) ∧ α(y, py))d(px, py);Ac)

+E((1− α(x, px) ∨ α(y, py))d(x, y);Ac) (3.7)
+P(only one accepts) · 1

where the first two lines deal with both accept and both reject in the case of A,
the third and fourth line considers the same case in the event of Ac. The last
line takes care of only one accepts. For the first two lines of (3.6) we argue that

P(both accept|A) ≥ inf
x,z∈B3R(0)

P(accepts|px = z) = exp(−Φ+(3R) + Φ−(3R)).

If both are accepted we know from Lemma 3.6 that

d̄(px, py)

d̄(x, y)
≤ (1− 2δ)

1
2 exp

(
−ηρ (‖x‖ ∨ ‖y‖) + η(

∥∥∥√2δξ
∥∥∥+ J)

)
≤ (1− 2δ)

1
2 eη(3R+J) ≤ (1− ρ̃)
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where the last step follows for small enough η. Using the complementary prob-
ability we can estimate

P(both reject|A) ≤ 1− P(both accept|A)

Combining both estimates we get P(A) (1− P(both accept|A)(1− ρ̃)) as coeffi-
cient in front of d(x, y). In order to show contraction we have to show that the
expression in the third and fourth line of (3.6) is close to P(Ac) · d(x, y) . We
note that

E ((1− α(x, px) ∨ α(y, py))d(x, y);Ac) + E ((α(x, px) ∧ α(y, py))d(px, py);Ac)

≤ E (d(px, py) ∨ d(x, y);Ac) ≤ d̄(x, y)E
d̄(px, py)

d̄(x, y)
∨ 1

≤ d(x, y)

ˆ
√

2δ‖ξ‖>2R

1 ∨ eη(
√

2δ‖ξ‖+J)dγ(ξ)

where the last step followed by Lemma 3.6. For small η the above is arbi-
trarily close to P(Ac) · d(x, y) by the dominated convergence theorem. By
writing the integrand as χ√2δ‖ξ‖>2R

(
1 ∨ exp(η(

√
2δ ‖ξ‖+ J)

)
and applying

Lemma 3.1 we conclude that this holds uniformly in m. Combing the first
four lines, the coefficient in front of d(x, y) is less than 1 independently of ε.
Only P(only one accepts) · 1 is left to bound in terms of d(x, y) :

P(only one accepts) =

ˆ
|α(x, px)− α(y, py)| dγ(ξ)

≤
ˆ

(|Φ(px)− Φ(py)|+ |Φ(x)− Φ(y)|)dγ(ξ)

≤ εd(x, y)

ˆ
(φ((1− ρ)R+

√
2δ ‖ξ‖) + φ(R))dγ(ξ)

The integral above is bounded by Fernique’s theorem, hence for ε small enough
combining with the result above we get an overall contraction.

Now let x, y ∈ Bc
R̃

(0) with d(x, y) < 1 and without loss of generality ‖y‖ ≥
‖x‖. Analogous to the above with A = {ω|‖

√
2δζ‖ ≤ r(‖x‖)} we have

d(P(x, ·),P(y, ·)) ≤ P(A) [P(both accept|A)(1− ρ)d(x, y)+

P(both reject|A)d(x, y)] + E (d(x, y) ∨ d(px, py);Ac)

+P(only one accepts) · 1

If “both accept” in the event of A the contraction constant is smaller than (1−ρ)

23



since r(‖x‖) ≤ ρ
2 ‖x‖ and using Lemma 3.6. For the next term it yields

E (d(px, py) ∨ d(x, y);Ac) ≤ d̄(x, y)E
d̄(px, py)

d̄(x, y)
∨ 1

≤ d̄(x, y)

ˆ

Ac

1 ∨ e−ρη(‖y‖)+η(‖√2δξ‖+J)dγ(ξ).

We denote the integral above by I, its integrand by f(ζ) and F > 0 then

I ≤ I1 + I2 =

ˆ
f(ξ)dγ(ξ)

ρ(‖y‖−J)+F≥‖√2δξ‖≥r(‖x‖∧‖y‖)
+

ˆ
f(ξ)dγ(ξ)

‖√2δξ‖≥ρ(‖y‖−J)+F

for the first part we have the upper bound P(Ac)e
√

2δηF . For the second part we
take g ∈ X? with ‖g‖ = 1 and note that {x|g(x) > R} ⊆ BR(0)c which yields

γ(BR(0)c) ≥ γ({x|g(x) > R}) ≥ exp(−β̃R2 + ζ)

using the one dimensional lower bound. For the uniformity in m we choose
g = e?1. We incorporate all occurring constants into ζ and use Proposition A.1
to bound

I2 ≤ P(Ac) exp

(
β̃
r(‖x‖)2

2δ
− ρη(‖y‖ − J)

η
√

2δ(ρ(‖y‖ − J) + F )− β
√

2δ(ρ(‖y‖ − J) + F )2 + ζ
)
.

For any τ > 0 first we choose F large enough and then η small enough so that
I ≤ (1 + τ)P(Ac)d(x, y). Again the estimates above are independent of ε which
we choose small in order to bound P(only one accepts|Ac) in terms of d(x, y).
We calculate as above

ˆ
|α(x, px)− α(y, py)| dγ(ξ)

≤
ˆ
|Φ(x)− Φ(y)|+ |Φ(px)− Φ(py)| dγ(ξ)

≤
ˆ

(φ(‖y‖) + φ(‖px‖ ∨ ‖py‖) dγ(ξ) ‖x− y‖

≤

Mκe
κ‖y‖ +

ˆ
φ((1− ρ) ‖y‖+

√
2δ ‖ξ‖)dγ(ξ)

 ‖x− y‖
≤ CMκεe

−η(‖x‖∨‖y‖−ε)∨0+κ‖y‖d̄(x, y)

where the last step follows using the upper bound for ‖x− y‖ from Lemma 3.6.
Choosing κ = η

2 and ε small enough, we can guarantee a uniform contraction.
Checking line by line, the same is true for them-dimensional approximation.
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3.2.3 The d-Smallness

Similarly to the globally Lipschitz case we have

Lemma 3.8. If S is bounded, then ∃n ∈ N and 0 < s < 1 such that for all
x, y ∈ S, m ∈ N and for d as in (3.5)

d(Pnm(x, ·),Pnm(y, ·)) ≤ s and d(Pn(x, ·),Pn(y, ·)) ≤ s .

Proof. By Lemma 3.5 d and ‖ · ‖ are comparable on bounded sets. If X0, Y0 ∈
BR(0) and both algorithms accept n proposals in a row that all lay in B2R(0),

d(Xn, Yn) ≤ exp(η(2R+ J))

ε
diam(S)(1− 2δ)n/2 ≤ 1

2
.

Hence the result follows analog to Lemma 3.5.

3.3 Uniqueness of the Invariant Measure
Proposition 3.9. If the conditions of one of Theorem 2.12 or 2.14 are satisfied,
then µ and µm are the unique invariant measures for P and Pm respectively.

Proof. The space (H, d0) with d0 = 1∧‖x− y‖ ≤ d is complete because (H, ‖·‖)
is complete and convergence in both spaces is equivalent. Using the dominated
convergence theorem for

Pφ(x) =

ˆ
αx.pxφ(px)dγ(ξ) + φ(x)

ˆ
(1− αx.px)dγ(ξ),

the Markov kernel P is Feller. The result is now a direct consequence of the
second part of the weak Harris theorem.

4 Results Concerning the Sample-Path Average
In this section we focus on sample path properties of the pCN algorithm. We
prove a strong law of large numbers, a CLT and bound on the MSE. This allows
us to quantify the approximation of µ(f) by

Sn,n0(f) =
1

n

n∑
i=1

f(Xi+n0)

. We present the results that are consequences of the Wasserstein and the L2
µ-

spectral gap in Section 4.1 and 4.2 respectively.

4.1 Consequences of the Wasserstein Spectral Gap
In this section we show the consequences of the Wasserstein spectral gap on the
sample average. n Compared to the results from the L2-spectral gap since they
apply to a smaller class of observables, but they hold for the algorithm started at
any deterministic point. Moreover, similar results also apply to non-reversible
Markov processes that have a Wasserstein spectral gap.
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4.1.1 Proper Metric and Lipschitz Functionals

For the CLT below we need a Wasserstein spectral gap with respect to a metric,
since the Monge-Kantorovich duality is used for its proof [27]. The distance

d̃ =

√
(1 + ‖x‖i + ‖y‖i) ∧ inf

T,ψ∈A(T,x,y)

1

ε

ˆ T

0

exp(η ‖ψ‖)dt(1 + ‖x‖i + ‖y‖i)

does not necessarily satisfy the triangle inequality. Therefore we introduce

d′ =

√
(1 + ‖x‖i + ‖y‖i) ∧ inf

T,ψ∈A(T,x,y)

1

ε

ˆ T

0

exp(η ‖ψ‖)(1 + ‖ψ‖i)dt. (4.1)

and show that d̃ ≤ d′ ≤ Cd̃, thus exponential convergence transfers from d̃ to
d′.

Lemma 4.1. For the distance-like function d̃ and metric d′ as above there is a
C such that

d′ ≤ d̃ ≤ Cd′.

Proof. Subsequently we assume without loss of generality that ‖y‖ ≥ ‖x‖. For
any path ψ ∈ A we denote

F (ψ) =
1

ε

ˆ T

0

exp(η ‖ψ‖)(1 + ‖ψ‖i)dt

by reflecting all points ψ(t) in B‖y‖(0)c at ∂B‖y‖(0) we make F (ψ) smaller,
hence we only have to consider ψ that satisfy

‖ψ(t)‖ ≤ ‖y‖ , t ∈ [0, T ] (4.2)

. The first part follows due to 1 + ‖ψ‖i ≤ 1 + ‖x‖i + ‖y‖i.
For the second part we will use that only have to consider x and y such that

inf
T,ψ∈A(T,x,y)

1

ε

ˆ T

0

exp(η ‖ψ‖)dt ≤ (1 + ‖x‖i + ‖y‖i). (4.3)

since the minimum expression in d̃ and d′ have (1 + ‖x‖i + ‖y‖i) in common.
We will first use this to show that x and y have to be close, if they are far out

we will show that any path close to the infimum has to satisfy ‖y‖ ≥ ψ≥ ‖y‖2 ,
hence 1 + ‖ψ‖i and (1 + ‖x‖i + ‖y‖i) are comparable. On fixed bounded sets d′
and d̃ are comparable. In order to get a lower on F (ψ) we distinguish between
ψ intersects or does not intersect BR(0). If the path lies completely outside the
ball we have

F (ψ) ≥ 1

ε
‖x− y‖ exp(ηR)(1 +Ri)
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if ψ and BR(0) have an intersection then ψ is longer than the shortest path
to BR(0)

F (ψ) ≥ 1

ε

ˆ ‖y‖−R
0

exp(η(‖y‖ − t))(1 + (‖y‖ − t)i)dt

≥ (‖y‖ −R) exp(η(‖y‖ −R))(1 + (‖y‖ −R)i)dt

We choose R = ‖y‖
2 and note that ‖y‖2 ≥

‖x−y‖
4 , which yields in both cases

F (ψ) ≥ 1

4ε
‖x− y‖ exp(η ‖y‖ /2)(1 + (‖y‖ /2)i).

By (4.3) this implies

‖x− y‖ ≤ 4ε exp(−η ‖y‖
2

)
1 + ‖x‖i + ‖y‖i

(1 + (‖y‖2 )i)
≤ 4ε exp(−η ‖y‖

2
)2i+1. (4.4)

For x and y in BQ(0) we have that d̃ ≤ (2Qi + 1)
1
2 d′ because of (4.2). It is

only left consider x, y ∈ BQ̃(0)c for Q̃ = Q− 4ε exp(−ηQ2 )2i+1 since (4.4) holds.
Subsequently we will show that for Q and hence Q̃ large enough it is sufficient to
consider paths ψ that do not intersect BR(0) for R = ‖y‖

2 . Suppose the shortest
the path would intersect BR(0) then the functional is larger than the shortest
path to the boundary of the ball, hence

F (ψ) ≥ 1

ε

ˆ ‖y‖−R
0

eη(‖y‖−t)(1 + (‖y‖ − t)i)dt

=
1

ε

exp(η ‖y‖)(η−1(1 + ‖y‖i) +

n∑
j=1

η−1−j i!

(i− j)!
‖y‖i−j)

− exp(ηR)(η−1(1 +Ri) +

n∑
j=1

η−1−j i!

(i− j)!
Ri−j)

 (4.5)

by i + 1 integration by parts. Let l be the line connecting x and y, then
using (4.5) yields

F (l) ≤ 1

ε
‖x− y‖ eη‖y‖(1 + ‖y‖i) ≤ 4 exp(η

‖y‖
2

)2i+1(1 + ‖y‖i).

For Q and in turn Q̃ large enough we have F (ψ) > F (l) by plugging R = ‖y‖
2

into (4.5). Hence for all t ∈ [0, L] ‖y‖ ≥ ψ≥ ‖y‖ /2 and therefore

2i+1(1 + ‖ψ‖i) ≥ (1 + ‖x‖i + ‖y‖i)

which yields that max(2Li, 2i+1)d′ ≥ d̃.
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4.1.2 Strong Law of Large Numbers

In this section we will prove a strong law of large numbers for Lipschitz functions.
Since µ (µm) is the unique invariant measures for P (Pm), µ (µm) is ergodic
and Birkhoff’s ergodic theorem applies. Hence we only have to extend Birkhoff’s
theorem from almost every to every initial condition to get a strong law of large
numbers.

Theorem 4.2. In the setting of Theorem 2.12 or 2.14, suppose supp µ = H
and h : H → R has Lipschitz constant L with respect to d̃, then for arbitrary
X0 ∈ H ∣∣∣∣∣ 1n

n∑
i=1

h(Xi)− Eµh

∣∣∣∣∣ a.s→ 0.

Proof. By Birkhoff’s ergodic theorem we know that this is true for measurable
h and a.e. initial condition. Because µ has full support for any t > 0 we can
choose Y0 such d̃(X0, Y0) ≤ t2 and Birkhoff’s theorem applies to Y0. Hence

∣∣∣∣∣ 1n
n∑
i=1

h(Xi)− Eµh

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
i=1

h(Y i)− Eµh

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

(h(Xi)− h(Y i))

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

h(Y i)− Eµh

∣∣∣∣∣+
1

n

n∑
i=1

Ld̃(Xi, Y i).

By the Wasserstein spectral gap we can couple Xn and Yn such that

Ed̃(Xn, Y n) ≤ Crnd̃(X0, Y 0)

for some 0 < r < 1. We then apply Markov’s inequality to get

P
(
d̃(Xn, Y n) ≥ c

)
≤ C r

nd(X0, Y 0)

c
.

Since Birkhoff’s theorem applies to the Markov process started at Y0 we have

P

(
lim sup

∣∣∣∣∣ 1n
n∑
i=1

h(Xi − Eµh)

∣∣∣∣∣ ≥ c
)

= P

(
lim sup

1

n

n∑
i=1

∣∣h(Xi)− h(Y i)
∣∣ ≥ c)

≤ C L

c(1− r)
d(X0, Y 0).

Setting c = t
L yields

P

(
lim sup

∣∣∣∣∣ 1n
n∑
i=1

h(Xi − Eµh)

∣∣∣∣∣ ≤ t
)
≥ 1− t C

1− r
.
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Using the fact that for A1 ⊇ A2 . . . lim
n→∞

P(An) = P(A) with A =
∞⋂
i=1

Ai the

result follows

P

(
lim
n→∞

∣∣∣∣∣ 1n
n∑
i=1

h(Xi)− Eµh

∣∣∣∣∣ = 0

)
= 1.

The above Theorem applies to a large class of functionals by the following
sufficient criterion for d̃ Lipschitzness.

Lemma 4.3. If f : H → R satisfies for all R ∈ R+

sup
x,y∈BR(0)

|f(x)− f(y)|
‖x− y‖

≤ CeκR for κ < η and sup
x∈BR(0)

f(x) ≤ C(1 +R
i
2 )

for all R ∈ R , then f is Lipschitz with respect to d̃.

Proof. Subsequently we assume without loss of generality that ‖y‖ ≥ ‖x‖. From
the arguments in Lemma 4.1 we know that for ‖x− y‖ ≥ 4ε exp(−η ‖y‖2 )2i+1 we

have d̃ ≥
√

1 + ‖x‖i + ‖y‖i, hence

|f(x)− f(y)| ≤ |f(x)|+ |f(y)| ≤ Cd′

and we only have to consider x and y that are very close. Consider x and y such
that ‖x− y‖ ≤ 4ε exp(−η ‖y‖2 )2i+1 then we have by arguments similar to those
in the proof of Lemma 3.6:

|f(x)− f(y)| ≤ ‖f‖Lip

(
B‖x‖∨‖y‖(0)

)
‖x− y‖

≤ ‖f‖Lip

(
B‖x‖∨‖y‖(0)

) ε exp(−η(‖x‖ ∨ ‖y‖ − ε) ∨ 0)

1 + ((‖x‖ ∨ ‖y‖ − ε) ∨ 0)
i
d̃(x, y),

where the coefficient in front of d̃ is bounded by assumption.

4.1.3 Central Limit Theorem

The result above does not give any rate of convergence. With a CLT on the other
hand it is possible to derive (asymptotic) confidence intervals and so estimate
the error for a finite n. We state a CLT that was proved by Komorowski and
Walczuk in [27] and show that if the conditions of Theorem 2.12 or 2.14 is
satisfied, then the result of Komorowski and Walczuk applies. This leads to:

Theorem 4.4. If the conditions of Theorem 2.12 or 2.14 are satisfied, then
there exists σ ∈ [0,+∞) such that

lim
n→+∞

1

n
E

(
n∑
i=1

f̃(Xs)

)2

= σ2,
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where f̃ := f − µ(f) and f is Lipschitz with respect to d′. Moreover, we have

lim
T→∞

P(
1√
n

n∑
i=1

f̃(Xs) < ξ) = Φσ(ξ), ∀ξ ∈ R

where Φσ(·) is the distribution function of N (0, σ2) a zero mean normal law
whose variance equals σ2.

Let (E, ρ) be a Polish metric space and Pt be the transition probability
semigroup for the E-valued Markov process Xt such that

Assumption 4.5.

1. The semigroup is Feller i.e PtCb(E) ⊂ Cb(E) and stochastic continuous
i.e.

lim
t→0+

P tf(x) = f(x), ∀x ∈ E, f ∈ Cb(E).

2. we have µP t ∈ Pi := {σ|σ(E) = 1 &
´
ρx0(x)idσ(x) ≤ ∞} for any µ ∈ Pi

and t ≥ 0,

3. for some x0 ∈ E there exist δ > 0 such that for all R <∞, and T ≥ 0

sup
t∈[0,T ]

sup
x∈BR(x0)

ˆ
ρ2+δ
x0

P t(x, dy) <∞

4. there exist x0 ∈ E and δ > 0 such that

A∗ := sup
t≥0

Eρ2+δ
x0

(Xt) <∞

5. there exist ĉ, γ > 0 such that

d1(µP t, νP t) ≤ ĉe−γtd1(µ, ν) ∈ P1

Under this assumption their result reads

Proposition 4.6. [27]Suppose that Assumption 4.5 is satisfied with i = 1,2 and
µ0 - the law of X0 - belongs to P1. Then, for any observable ψ ∈ Lip(E) the
following are true:

1. (the weak law of large numbers) there exist v? ∈ R such that

lim
T→+∞

1

T

ˆ T

0

ψ(Xs)ds = v? in probability.

2. (asymptotic variance) For ψ̃ := ψ(x)− v? there is σ ∈ [0,+∞) such that

lim
T→+∞

1

T
E(

ˆ T

0

ψ̃(Xs)ds)
2 = σ2.
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3. (the CLT) Let Φσ be the c.d.f. of a N (0, σ2) random variable then

lim
T→∞

P

(
1√
T

ˆ T

0

ψ̃(Xs)ds < ξ

)
= Φσ(ξ), ∀ξ ∈ R.

Proof of Theorem 4.4. Since convergence in ‖·‖H is equivalent to convergence
in d′ (H, d′) is complete and we will verify Assumption 4.5 for ρ = d′. The
first part of the assumption is satisfied since P is Feller (c.f. section3.3) and
stochastic continuity is not needed for time discrete processes. To verify the
other assumptions we note that ρx0

(x)i is a Lyapunov function for P using the
same argument as in Lemma 3.3. For the second part we note for every finite i

µPn(ρix0
) =

ˆ
lnρix0

+Kdµ(x) <∞.

The fourth assumptions follows because ρ2+δ
x0

is a Lyapunov function such that

Pnρ2+δ
x0
≤ lnρ2+δ

x0
(X0) +K

and we can bound A? ≤ ρ2+δ
x0

(X0) +K. For third assumption we note

sup
i=0...n

sup
x∈BR(x0)

Pρ2+δ
x0

(x) ≤ sup
x∈BR(x0)

ρ2+δ
x0

(x) +
1

1− l
K.

The last part is a consequence of Lemma 4.1 and Theorem 2.14.

4.2 Consequences of L2
µ-Spectral Gap

Under the assumption of Theorem (2.12) or (2.14) we have shown the existence
of an L2

µ-spectral gap in Section 2.2.2. Now we can use all existing consequences
for the ergodic average with and without burn in (n0 = 0):

Sn,n0
(f) =

1

n

n∑
j=1

f(Xj+n0
) Sn = Sn,0.

First of all we recall a general form of the spectral theorem for self-adjoint
bounded operators (e.g. [42])

Proposition 4.7. Let P be a bounded self-adjoint operator on some Hilbert
space H. Then exist λ,Λ such that σ(P ) ⊆ [λ,Λ] and a operator-valued spectral
measure with support in [λ,Λ] such that

〈
P kf, g

〉
=

ˆ Λ

λ

αk 〈E(dα)f, g〉 , f, g ∈ H and k ∈ N.
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Let F : [λ,Λ]→ R be a continuous function. Then one has by the continuous
functional calculus a self-adjoint operator F (P ) with

〈F (P )f, g〉 =

ˆ Λ

λ

F (α) 〈E(dα)f, g〉 f, g ∈ H,

and
‖F (P )‖H→H = max

α∈σ(P )
|F (α)| .

In the setting of Proposition 4.7 we have due to the L2
µ spectral gap [λ,Λ] ⊂

[−β, β]. As a consequence, the following result of [26] yields a CLT.

Proposition 4.8. ([26] Statement adapted from [30]).
Suppose we have a reversible and ergodic Markov chain and a function f ∈

L2. If

σ2
f,P =

ˆ

[−1,1]

1 + x

1− x
〈E(dx)f, f〉 <∞,

then for X0 ∼ µ the expression
√
n(Sn − µ(f)) converges weakly to N (0, σ2

f,P ).

In our case σ2
f,P is bounded by 2µ(f2)

1−β which yields a uniform lower bound on
the asymptotic variance in m. The result above has been extended to µ almost
every initial condition in [12] which also applies to our case.

A different approach due to [46] is to consider the MSE

eν(Sn,n0
, f) = (Eν,K

∣∣Sn,n0
(f)− µ(f)2

∣∣)1/2.

Using Tschebyscheff inequality this results in a confidence interval for S(f). We
can bound it by using the following proposition from [46]:

Proposition 4.9. Suppose that we have a Markov chain with Markov operator
P which has an L2

µ-spectral gap 1− β. For p ∈ (2,∞] let n0(p) be the smallest
natural number which is greater or equal to

1

log(β−1)


p

2(p−2) log( 32p
p−2 )

∥∥∥ dνdµ − 1
∥∥∥

p
p−2

p ∈ (2, 4)

log(64)
∥∥∥ dνdµ − 1

∥∥∥
p
p−2

p ∈ [4,∞].
(4.6)

Then
sup
‖f‖p≤1

eν(Sn,n0
, f) ≤ 2

n(1− β)
+

2

n2(1− β)2
.

In our setting n0(p) is finite for ν = γ under the additional assumption that
for all u1 > 0 there is a u2 such that

Φ(‖x‖) ≤ u1 ‖x‖2 + u2.

Using Fernique’s theorem this implies that that dγdµ−1 has moments of all orders.
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5 Conclusion
From an applications perspective, the primary thrust of this paper is to develop
an understanding of MCMC methods in high dimension. Our work has concen-
trated on identifying the (possibly lack of) dimension dependence of spectral
gaps for the standard random walk method RWM, and a recently developed
variant pCN adapted to measures defined via density w.r.t a Gaussian. There
are also variants of the Metropolis-adjusted Langevin algorithm (MALA) [5], as
well as Hybrid Monte-Carlo methods [3] adapted to the sampling of measures
defined via density w.r.t a Gaussian, and it would be interesting to employ the
weak Harris theory to study these algorithms. Other classes of target mea-
sure, such as those arising from Besov prior measures [28, 14], or the uniform
measures in [47], would also provide interesting applications. More generally,
we expect that the weak Harris theory will be well-suited to the study of many
MCMC methods in high dimensions, because of its roots in the study of Markov
processes in infinite dimensional spaces [22]. In contrast, the theory developed
in [37] does not work well for the kind of high dimensional problems that are
studied here.

From a methodological perspective, we have demonstrated a particular ap-
plication of the theory developed in [22], demonstrating its versatility for the
analysis of rates of convergence in Markov chains. We have also shown how
that theory, whose cornerstone is a Wasserstein spectral gap, may usefully be
extended to study L2 spectral gaps, and resulting sample path properties. These
observations will be useful in a variety of applications, not just those arising in
the study of MCMC.

All our results were presented for separable Hilbert spaces, but in fact all our
results hold on an arbitrary Banach space by using a Gaussian series (c.f. Section
3.5 in [6]) instead of the Karhunen-Loeve expansion and the m-independence is
due to Theorem 3.3.6 in [6].

A Gaussian measures
In this section we will derive the estimates for Gaussian measure that we needed
above. In the whole section γ is Gaussian measure on a Banach space with
covariance operator Cγ . Many estimates for Gaussian measures exploit their
quadratic-exponential moments (see 3.2). Fernique’s Theorem is often used to
bound integrals over the whole domain. We will use it to derive bounds on an
integral over the complement of a large ball:

ˆ

{‖u‖≥K}

h(u)dγ(u).

We need this to show that P and Pm is d-contracting (see Section 3.2.2 ).

Proposition A.1. (Tail estimates)
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1. For f : R→ R we have
ˆ

‖x‖≥K

f(‖x‖)dγ = f(K)γ(‖x‖ ≥ K) +

ˆ ∞
K

γ(‖x‖ ≥ t)f ′dt

2. For β small enough and α ∈ R+ there is a constant Cα.β such that for
K > α

2β ˆ

{‖u‖≥K}

exp(α ‖u‖)dγ(u) ≤ Cα,βe−βK
2+αK .

Proof. Using integration by parts we get the first part

ˆ

‖x‖≥K

f(‖x‖)dγ = f(K)γ(‖x‖ ≥ K) +

ˆ ∞
K

γ(‖x‖ ≥ t)f ′dt.

For the second part we set f(x) = exp(αx) in the above and use Lemma A.2
ˆ

‖x‖≥K

exp(α ‖x‖)dγ ≤ Fβ exp(−βK2 + αK) + Fβα

ˆ ∞
K

exp(−βt2 + αt).

For the integral on the right hand side we use substitution an a result from [40]
ˆ ∞
K

exp(−βt2 + αt) = exp(
α2

2β
)

ˆ ∞
K

exp

(
−β(t− α

2β
)2

)
dt

= exp(
α2

2β
)

ˆ ∞
√
β(K− α

2β )

exp(−s2)ds

≤ 1
√
β(K − α

2β ) +
√
β(K − α

2β )2 + 4
π

exp(−β(K − α

2β
)2 +

α2

2β
)

Lemma A.2. Let u be distributed according to γ = N (0, C), then we have for
0 < β < 1

2‖Cγ‖

P(‖u‖ ≥ K) ≤ Fβe−βK
2

.

Proof. By Fernique’s theorem 3.2 we know that E(eβ‖u‖
2

) = Fβ < ∞. By
Markov’s inequality it follows that

P(‖u‖ ≥ K) ≤ E(eβ‖u‖
2

)

eβK2 = Fβe
−βK2

.
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