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Abstract
The aim of this note is to provide a short and self-contained proof of Hörmander’s
theorem about the smoothness of transition probabilities for a diffusion under
Hörmander’s “brackets condition”. While both the result and the technique of
proof are well-known, the exposition given here is novel in two aspects. First, we
introduce Malliavin calculus in an “intuitive” way, without using Wiener’s chaos
decomposition. While this may make it difficult to prove some of the standard
results in Malliavin calculus (boundedness of the derivative operator in Lp spaces
for example), we are able to bypass these and to replace them by weaker results
that are still sufficient for our purpose. Second, we introduce a notion of “almost
implication” and “almost truth” (somewhat similar to what is done in fuzzy logic)
which allows, once the foundations of Malliavin calculus are laid out, to give a
very short and streamlined proof of Hörmader’s theorem that focuses on the main
ideas without clouding it by technical details.

Dedicated to the memory of Paul Malliavin.

1 Introduction

One of the main tools in many results on the convergence to equilibrium of Markov
processes is the presence of some form of “smoothing” for the semigroup. For
example, if a Markov operator P over a Polish space X possesses the strong Feller
property (namely it maps Bb(X ), the space of bounded measurable functions into
Cb(X ), the space of bounded continuous functions), then one can conclude that
any two ergodic invariant measures for P must either coincide or have disjoint
topological supports. Since the latter can often been ruled out by some form of
controllability argument, we see how the strong Feller property is the basis for many
proofs of ergodicity.

It is then desirable to have criteria that are as simple to formulate as possible
and that ensure that the Markov semigroup associated to a given Markov process
has some smoothing property. One of the most natural classes of Markov processes
are given by diffusion processes and this will be the object of study in this note. Our
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main object of study is a stochastic differential equation of the form

dx = V0(x) dt+
m∑
i=1

Vi(x) ◦ dWi , (1.1)

where the Vi’s are smooth vector fields on Rn and theWi’s are independent standard
Wiener processes. In order to keep all arguments as straightforward as possible,
we will assume throughout this note that these vector fields assume the coercivity
assumptions necessary so that the solution flow to (1.1) is smooth with respect to its
initial condition and that all of its derivatives have moments of all orders. This is
satisfied for example if the Vi’s are C∞ with bounded derivatives of all orders.

Remark 1.1 We wrote (1.1) as a Stratonowich equation on purpose. This is for
two reasons: at a pragmatic level, this is the “correct” formulation which allows to
give a clean statement of Hörmander’s theorem (see Definition 1.2 below). At the
intuitive level, the question of smoothness of transition probabilities is related to
that of the extent of their support. The Stroock-Varadhan support theorem [SV72]
characterises this as consisting precisely of the closure of the set of points that can
be reached if the Wiener processes Wi in (1.1) are replaced by arbitrary smooth
control functions. This would not be true in general for the Itô formulation.

It is well-known that if the equation (1.1) is elliptic namely if, for every point
x ∈ Rn, the linear span of {Vi(x)}mi=1 is all of Rn, then the law of the solution to
(1.1) has a smooth density with respect to Lebesgue measure. Furthermore, the
corresponding Markov semigroup Pt defined by

Ptϕ(x0) = Ex0ϕ(xt) ,

is so that Ptϕ is smooth, even if ϕ is only bounded measurable. (Think of the
solution to the heat equation, which corresponding to the simplest case where
V0 = 0 and the Vi form an orthonormal basis of Rn.) In practice however, one
would like to obtain a criterion that also applies to some equations where the
ellipticity assumption fails. For example, a very well-studied model of equilibrium
statistical mechanics is given by the Langevin equation:

dq = p dt , dp = −∇V (q) dt− p dt+
√

2T dW (t) ,

where T > 0 should be interpreted as a temperature, V : Rn → R+ is a sufficiently
coercive potential function, and W is an n-dimensional Wiener process. Since
solutions to this equation take values in R2n (both p and q are n-dimensional),
this is definitely not an elliptic equation. At an intuitive level however, one would
expect it to have some smoothing properties: smoothing reflects the spreading of
our uncertainty about the position of the solution and the uncertainty on p due
to the presence of the noise terms gets instantly transmitted to q via the equation
dq = p dt.
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In a seminal paper [Hör67], Hörmander was the first to formulate the “correct”
non-degeneracy condition ensuring that solutions to (1.1) have a smoothing effect.
To describe this non-degeneracy condition, recall that the Lie bracket [U, V ] between
two vector fields U and V on Rn is the vector field defined by

[U, V ](x) = DV (x)U (x)−DU (x)V (x) ,

where we denote by DU the derivative matrix given by (DU )ij = ∂jUi. This
notation is consistent with the usual notation for the commutator between two
linear operators since, if we denote by AU the first-order differential operator acting
on smooth functions f by AUf (x) = 〈U (x),∇f (x)〉, then we have the identity
A[U,V ] = [AU , AV ].

With this notation at hand, we give the following definition:

Definition 1.2 Given an SDE (1.1), define a collection of vector fields Vk by

V0 = {Vi : i > 0} , Vk+1 = Vk ∪ {[U, Vj] : U ∈ Vk & j ≥ 0} .

We also define the vector spaces Vk(x) = span{V (x) : V ∈ Vk}. We say that
(1.1) satisfies the parabolic Hörmander condition if

⋃
k≥1 Vk(x) = Rn for every

x ∈ Rn.

With these notations, Hörmander’s theorem can be formulated as

Theorem 1.3 Consider (1.1) and assume that all vector fields have bounded deriva-
tives of all orders. If it satisfies the parabolic Hörmander condition, then its solutions
admit a smooth density with respect to Lebesgue measure and the corresponding
Markov semigroup maps bounded functions into smooth functions.

Hörmander’s original proof was formulated in terms of second-order differential
operators and was purely analytical in nature. Since the main motivation on the
other hand was probabilistic and since, as we will see below, Hörmander’s condition
can be understood at the level of properties of the trajectories of (1.1), a more
stochastic proof involving the original stochastic differential equation was sought
for. The breakthrough came with Malliavin’s seminal work [Mal78], where he laid
the foundations of what is now known as the “Malliavin calculus”, a differential
calculus in Wiener space and used it to give a probabilistic proof of Hörmander’s
theorem. This new approach proved to be extremely successful and soon a number
of authors studied variants and simplifications of the original proof [Bis81b, Bis81a,
KS84, KS85, KS87, Nor86]. Even now, more than three decades after Malliavin’s
original work, his techniques prove to be sufficiently flexible to obtain related results
for a number of extensions of the original problem, including for example SDEs
with jumps [Tak02, IK06, Cas09, Tak10], infinite-dimensional systems [Oco88,
BT05, MP06, HM06, HM11], and SDEs driven by Gaussian processes other than
Brownian motion [BH07, CF10, HP11].



WHY IS IT THE CORRECT CONDITION? 4

A complete rigorous proof of Theorem 1.3 goes somewhat beyond the scope of
these notes. However, we hope to be able to give a convincing argument showing
why this result is true and what are the main steps involved in its probabilistic
proof. The aim in writing these notes was to be sufficiently self-contained so that
a strong PhD student interested in stochastic analysis would be able to fill in the
missing gaps without requiring additional ideas. The interested reader can find the
technical details required to make the proof rigorous in [Mal78, KS84, KS85, KS87,
Nor86, Nua95]. Hörmander’s original, completely different, proof using fractional
integrations can be found in [Hör67]. A yet completely different functional-analytic
proof using the theory of pseudo-differential operators was developed by Kohn in
[Koh78] and can also be found in [Hör85] or, in a slightly different context, in the
recent book [HN05].

The remainder of these notes is organised as follows. First, in Section 2 below,
we will show why it is natural that the iterated Lie brackets appear in Hörmander’s
condition. Then, in Section 3, we will give an introduction to Malliavin calculus,
including in particular its integration by parts formula in Wiener space. Finally, in
Section 4, we apply these tools to the particular case of smooth diffusion processes
in order to give a probabilistic proof of Hörmander’s theorem.
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2 Why is it the correct condition?

At first sight, the condition given in Definition 1.2 might seem a bit strange. Indeed,
the vector field V0 is treated differently from all the others: it appears in the recursive
definition of the Vk, but not in V0. This can be understood in the following way:
consider trajectories of (1.1) as curves in space-time. By the Stroock-Varadhan
support theorem [SV72], the law of the solution to (1.1) on pathspace is supported
by the closure of those smooth curves that, at every point (x, t), are tangent to the
hyperplane spanned by {V̂0, . . . , V̂m}, where we set

V̂0(x, t) =

(
V0(x)

1

)
, V̂j(x, t) =

(
Vj(x)

0

)
, j = 1, . . . ,m .

With this notation at hand, we could define V̂k as in Definition 1.2, but with V̂0 =
{V̂0, . . . , V̂m}. Then, it is easy to check that Hörmander’s condition is equivalent to
the condition that

⋃
k≥1 V̂k = Rn+1 for every (x, t) ∈ Rn+1.
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This condition however has a simple geometric interpretation. For a smooth
manifold M, recall that E ⊂ TM is a smooth subbundle of dimension d if
Ex ⊂ TxM is a vector space of dimension d at every x ∈M and if the dependency
x 7→ Ex is smooth. (Locally, Ex is the linear span of finitely many smooth vector
fields onM.) A subbundle is called integrable if, whenever U, V are vector fields
onM taking values in E, their Lie bracket [U, V ] also takes values in E.

With these definitions at hand, recall the well-known Frobenius integrability
theorem from differential geometry:

Theorem 2.1 LetM be a smooth n-dimensional manifold and let E ⊂ TM be a
smooth vector bundle of dimension d < n. Then E is integrable if and only if there
(locally) exists a smooth foliation ofM into leaves of dimension d such that, for
every x ∈M, the tangent space of the leaf passing through x is given by Ex.

In view of this result, Hörmander’s condition is not surprising. Indeed, if
we define E(x,t) =

⋃
k≥0 V̂k(x, t), then this gives us a subbundle of Rn+1 which

is integrable by construction of the V̂k. Note that the dimension of E(x,t) could
in principle depend on (x, t), but since the dimension is a lower semicontinuous
function, it will take its maximal value on an open set. If, on some open set, this
maximal value is less than n + 1, then Theorem 2.1 tells us that, there exists a
submanifold (with boundary) M̄ ⊂M of dimension strictly less than n such that
T(y,s)M̄ = E(y,s) for every (y, s) ∈ M̄. In particular, all the curves appearing in
the Stroock-Varadhan support theorem and supporting the law of the solution to
(1.1) must lie in M̄ until they reach its boundary. As a consequence, since M̄ is
always transverse to the sections with constant t, the solutions at time t will, with
positive probability, lie in a submanifold ofM of strictly positive codimension.
This immediately implies that the transition probabilities cannot be continuous with
respect to Lebesgue measure.

To summarise, if Hörmander’s condition fails on an open set, then transition
probabilities cannot have a density with respect to Lebesgue measure, thus showing
that Hörmander’s condition is “almost necessary” for the existence of densities. The
hard part of course is to show that it is a sufficient condition. Intuitively, the reason
is that Hörmander’s condition allows the solution to (1.1) to “move in all directions”.
Why this is so can be seen from the following interpretation of the Lie brackets. Set

un(t) =
1

n
cos(n2t) , vn(t) =

1

n
sin(n2t) ,

and consider the solution to

ẋ = U (x) u̇n(t) + V (x) v̇n(t) . (2.1)

We claim that, as n→∞, this converges to the solution to

u̇ =
1

2
[U, V ](x) . (2.2)
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This can be seen as follows. If we integrate (2.1) over a short time interval, we have
the first order approximation

x(h) ≈ x(1)(h) def
= x0 + U (x0)un(h) + V (x0)vn(h) ,

which simply converges to x0 as n→∞. To second order, however, we have

x(h) ≈ x0 +

∫ h

0
(U (x(1)) u̇n + V (x(1)) v̇n) dt

≈ x(1)(h) +

∫ h

0
(DU (x0) u̇n +DV (x0) v̇n)(U (x0)un + V (x0)vn) dt

≈ x0 +

∫ h

0
(DU (x0)V (x0)vnu̇n +DV (x0)U (x0)unv̇n) dt .

Here, we used the fact that the integral of unu̇n (and similarly for vnv̇n) is given by
1
2u

2
n and therefore converges to 0 as n→ 0. Note now that over a period, vn(t)u̇n(t)

averages to −1
2 and un(t)v̇n(t) averages to 1

2 , thus showing that one does indeed
obtain (2.2) in the limit. This reasoning shows that, by combining motions in the
directions U and V , it is possible to approximate, to within arbitrary accuracy,
motion in the direction [U, V ].

A similar reasoning shows that if we consider

ẋ = U (x) + V (x) v̇n(t) ,

then, to lowest order in 1/n, we obtain that as n→∞, x follows

ẋ ≈ U (x) +
1

2n
[U, V ](x) .

Combining these interpretations of the meaning of Lie brackets with the Stroock-
Varadhan support theorem, it suggests that, if Hörmander’s condition holds, then
the support of the law of xt will contain an open set around the solution at time t to
the deterministic system

ẋ = V0(x) , x(0) = x0 .

This should at least render it plausible that under these conditions, the law of xt has
a density with respect to Lebesgue measure. The aim of this note is to demonstrate
how to turn this heuristic into a mathematical theorem with, hopefully, a minimum
amount of effort.

Remark 2.2 While Hörmander’s condition implies that the control system associ-
ated to (1.1) reaches an open set around the solution to the deterministic equation
ẋ = V0(x), it does not imply in general that it can reach an open set around x0. In
particular, it is not true that the parabolic Hörmander condition implies that (1.1)
can reach every open set. A standard counterexample is given by

dx = − sin(x) dt+ cos(x) ◦ dW (t) , x0 = 0 ,

which satisfies Hörmander’s condition but can never exit the interval [−π/2, π/2].
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3 An Introduction to Malliavin calculus

In this section, we collect a number of tools that will be needed in the proof. The
main tool is the integration by parts formula from Malliavin calculus, as well of
course as Malliavin calculus itself.

The main tool in the proof is the Malliavin calculus with its integration by part
formula in Wiener space, which was developed precisely in order to provide a
probabilistic proof of Theorem 1.3. It essentially relies on the fact that the image
of a Gaussian measure under a smooth submersion that is sufficiently integrable
possesses a smooth density with respect to Lebesgue measure. This can be shown
in the following way. First, one observes the following fact:

Lemma 3.1 Let µ be a probability measure on Rn such that the bound∣∣∣∫
Rn
D(k)G(x)µ(dx)

∣∣∣ ≤ Ck‖G‖∞ ,

holds for every smooth bounded function G and every k ≥ 1. Then µ has a smooth
density with respect to Lebesgue measure.

Proof. Let s > n/2 so that Hs ⊂ Cb by Sobolev embedding. By duality, the
assumption then implies that every distributional derivative of µ belongs to the
Sobolev space H−s, so that µ belongs to H` for every ` ∈ R. The result then
follows from the fact that H` ⊂ Ck as soon as ` > k + n

2 .

Consider now a sequence of N independent Gaussian random variables δwk
with variances δtk for k ∈ {1, . . . , N}, as well as a smooth mapX : RN → Rn. We
also denote by w the collection {δwk}k≥1 and we define the n× n matrix-valued
map

Mij(w) =
∑
k

∂kXi(w)∂kXj(w) δtk , (3.1)

where we use ∂k as a shorthand for the partial derivative with respect to the variable
δwk. With this notation, X being a submersion is equivalent to M (w) being
invertible for every w.

Before we proceed, let us introduce additional notation, which hints at the fact
that one would really like to interpret the δwk as the increments of a Wiener process
of an interval of length δtk. When considering a family {Fk}Nk=1 of maps from
RN → Rn, we identify it with a continuous family {Ft}t≥0, where

Ft
def
= Fk , t ∈ [tk, tk+1) , tk

def
=
∑
`≤k

δt` . (3.2)

Note that with this convention, we have t0 = 0, t1 = δt1, etc. This is of course
an abuse of notation since Ft is not equal to Fk for t = k, but we hope that it will
always be clear from the context whether the index is a discrete or a continuous
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variable. We also set Ft = 0 for t ≥ tN . With this notation, we have the natural
identity ∫

Ft dt =
N∑
k=1

Fk δtk .

Furthermore, given a smooth map G : RN → R, we will from now on denote by
DtG the family of maps such that DtG = ∂kG for t ∈ [tk, tk+1), so that (3.1) can
be rewritten as

Mij(w) =

∫
DtXi(w)DtXj(w) dt .

The quantity DtG is called the Malliavin derivative of the random variable G.
The main feature of the Malliavin derivative operator Dt suggesting that one

expects it to be well-posed in the limit N → ∞ is that it was set up in such a
way that it is invariant under refinement of the mesh {δtk} in the following way.
For every k, set δwk = δw−k + δw+

k , where δw±k are independent Gaussians with
variances δt±k with δt−k + δt+k = δtk and then identify maps G : RN → R with a
map Ḡ : R2N → R by

Ḡ(δw±1 , . . . , δw
±
N ) = G(δw−1 + δw+

1 , . . . , δw
−
N + δw+

N ) .

Then, for every t ≥ 0, DtḠ is precisely the map identified with DtG.
With all of these notations at hand, we then have the following result:

Theorem 3.2 Let X : RN → R be smooth, assume that M (w) is invertible for
every w and that, for every p > 1 and every m ≥ 0, we have

E|∂k1 · · · ∂kmX(w)|p <∞ , E‖M (w)−1‖p <∞ . (3.3)

Then the law of X(w) has a smooth density with respect to Lebesgue measure. Fur-
thermore, the derivatives of the law of X can be bounded from above by expressions
that depend only on the bounds (3.3), but are independent of N , provided that∑
δtk = T remains fixed.

Besides Lemma 3.1, the main ingredient of the proof of Theorem 3.2 is the
following integration by parts formula which lies at the heart of the success of Malli-
avin calculus. If Fk and G are square integrable functions with square integrable
derivatives, then we have the identity

E
(∫

DtG(w)Ft(w) dt
)

= E
∑
k

∂kG(w)Fk(w) δtk

= EG(w)
∑
k

Fk(w) δwk − EG(w)
∑
k

∂kFk(w) δtk

def
= E

(
G(w)

∫
Ft dw(t)

)
, (3.4)
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where we defined the Skorokhod integral
∫
Ft dw(t) by the expression on the second

line. Note that in order to obtain (3.4), we only integrated by parts with respect to
the variables δwk.

Remark 3.3 The Skorokhod integral is really an extension of the usual Itô integral,
which is the justification for our notation. This is because, if Ft is an adapted
process, then Ftk is independent of δw` for ` ≥ k by definition. As a consequence,
the term ∂kFk drops and we are reduced to the usual Itô integral.

Remark 3.4 It follows immediately from the definition that one has the identity

Dt

∫
Fs dw(s) = Ft +

∫
DtFs dw(s) . (3.5)

Formally, one can think of this identity as being derived from the Leibnitz rule,
combined with the identity Dt(dw(s)) = δ(t− s) ds, which is a kind of continuous
analogue of the trivial discrete identity ∂kδw` = δk`.

This Skorokhod integral satisfies the following extension of Itô’s isometry:

Proposition 3.5 Let Fk be square integrable functions with square integrable
derivatives, then

E
(∫

Ft dw(t)
)2

= E
∫
F 2
t (w) dt+ E

∫ ∫
DtFs(w) DtFs(w) ds dt

≤ E
∫
F 2
t (w) dt+ E

∫ ∫
|DtFs(w)|2 ds dt ,

holds.

Proof. It follows from the definition that one has the identity

E
(∫

Ft dw(t)
)2

=
∑
k,`

E(FkF` δwkδw` + ∂kFk∂`F` δtkδt`− 2Fk∂`F` δwkδt`) .

Applying the identity EGδw` = E∂`Gδt` to the first term in the above formula
(with G = FkF` δwk), we thus obtain

. . . =
∑
k,`

E(FkF`δk,`δt` + ∂kFk ∂`F` δtkδt` + (F`∂`Fk − Fk∂`F`) δwkδt`) .

Applying the same identity to the last term then finally leads to

. . . =
∑
k,`

E(FkF`δk,`δt` + ∂kF` ∂`Fk δtkδt`) ,

which is precisely the desired result.
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As a consequence, we have the following:

Proposition 3.6 Assume that
∑
δtk = T <∞. Then, for every p > 0 there exists

C > 0 and k > 0 such that the bound

E
∣∣∣∫ Fs dw(s)

∣∣∣p ≤ C(1 +
∑

0≤`≤k
sup
t0,...,t`

E|Dt1 · · ·Dt`Ft0 |
2p
)

,

holds. Here, C may depend on T and p, but k depends only on p.

Proof. Since the case p ≤ 2 follows from Proposition 3.5, we can assume without
loss of generality that p > 2. Combining (3.4) with (3.5) and then applying Hölder’s
inequality, we have

E
∣∣∣∫ Fs dw(s)

∣∣∣p = (p− 1) E
∣∣∣∫ Fs dw(s)

∣∣∣p−2 ∫ Ft

(
Ft +

∫
DtFs dw(s)

)
dt

≤ 1

2
E
∣∣∣∫ Fs dw(s)

∣∣∣p + cE
∫ ∣∣∣Ft +

∫
DtFs dw(s)

∣∣∣ 2p3 dt+ cE
∫
|Ft|2p dt

≤ 1

2
E
∣∣∣∫ Fs dw(s)

∣∣∣p + cE
∫ ∣∣∣∫ DtFs dw(s)

∣∣∣ 2p3 dt+ cE
∫

(1 + |Ft|)2p dt .

where c is some constant depending on p and T that changes from line to line. The
claim now follows by induction.

Remark 3.7 The bound in Proposition 3.6 is clearly very far from optimal. Actually,
it is known that, for every p ≥ 1, there exists C such that

E
∣∣∣∫ Fs dw(s)

∣∣∣2p ≤ CE
∣∣∣∫ F 2

s ds
∣∣∣p + CE

∣∣∣∫ |DtFs|2 ds dt
∣∣∣p ,

even if T =∞. However, this extension of the Burkholder-Davies-Gundy inequality
requires highly non-trivial harmonic analysis and, to best of the author’s knowledge,
cannot be reduced to a short elementary calculation. The reader interested in
knowing more can find its proof in [Nua95, Ch. 1.3–1.5].

The proof of Theorem 3.2 is now straightforward:

Proof of Theorem 3.2. We want to show that Lemma 3.1 can be applied. For η ∈
Rn, we then have from the definition of M the identity

(DjG)(X(w)) =
∑
k,m

∂k(G(X(w)))∂kXm(w) δtk M−1
mj (w) . (3.6)

Combining this identity with (3.4), it follows that

EDjG(X) = E
(
G(X(w))

∑
m

∫
DtXm(w) M−1

mj (w) dw(t)
)
. (3.7)
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Note that, by the chain rule, one has the identity

DtM
−1 = −M−1(DtM )M−1 ,

and similarly for higher order derivatives, so that the Malliavin derivatives of M−1

can be bounded by terms involving M−1 and the Malliavin derivatives of X .
Combining this with Proposition 3.5 and (3.3) immediately shows that the

requested result holds for k = 1. Higher values of k can be treated by induction
by repeatedly applying (3.6). This will lead to expressions of the type (3.7), with
the right hand side consisting of multiple Skorokhod integrals of higher order
polynomials in M−1 and derivatives of X .

By Proposition 3.6, the moments of each of the terms appearing in this way can
be bounded by finitely many of the expressions appearing in the assumption so that
the required statement follows.

4 Application to Diffusion Processes

We are now almost ready to tackle the proof of Hörmander’s theorem. Before we
start, we discuss how DsXt can be computed when Xt is the solution to an SDE of
the type (1.1) and we use this discussion to formulate precise assumption for our
theorem.

4.1 Malliavin Calculus for Diffusion Processes
By taking the limit N → ∞ and δtk → 0 with

∑
δtk = 1, the results in the

previous section show that one can define a “Malliavin derivative” operator D ,
acting on a suitable class of “smooth” random variables and returning a stochastic
process that has all the usual properties of a derivative. Let us see how it acts on the
solution to an SDE of the type (1.1).

An important tool for our analysis will be the linearisation of (1.1) with respect
to its initial condition. Denote by Φt the (random) solution map to (1.1), so that
xt = Φt(x0). It is then known that, under Assumption 4.2 below, Φt is almost
surely a smooth map for every t. We actually obtain a flow of smooth maps, namely
a two-parameter family of maps Φs,t such that xt = Φs,t(xs) for every s ≤ t and
such that Φt,u ◦ Φs,t = Φs,u and Φt = Φ0,t. For a given initial condition x0, we
then denote by Js,t the derivative of Φs,t evaluated at xs. Note that the chain rule
immediately implies that one has the composition law Js,u = Jt,uJs,t, where the
product is given by simple matrix multiplication. We also use the notation J (k)

s,t for
the kth-order derivative of Φs,t.

It is straightforward to obtain an equation governing J0,t by differentiating both
sides of (1.1) with respect to x0. This yields the non-autonomous linear equation

dJ0,t = DV0(xt) J0,t dt+
m∑
i=1

DVi(xt) J0,t ◦ dWi(t) , J0,0 = I , (4.1)

where I is the n× n identity matrix. Higher order derivatives J (k)
0,t with respect to

the initial condition can be defined similarly.
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Remark 4.1 For every s > 0, the quantity Js,t solves the same equation as (4.1),
except for the initial condition which is given by Js,s = I .

On the other hand, we can use (3.5) to, at least on a formal level, take the
Malliavin derivative of the integral form of (1.1), which then yields for r ≤ t the
identity

Dj
rX(t) =

∫ t

r
DV0(Xs) Dj

rXs ds+
m∑
i=1

∫ t

r
DVi(Xs) Dj

rXs ◦ dWi(s) + Vj(Xr) .

(Here we denote by Dj the Malliavin derivative with respect to Wj ; the generalisa-
tion of the discussion of the previous section to the case of finitely many independent
Wiener processes is straightforward.) We see that, save for the initial condition at
time t = r given by Vj(Xr), this equation is identical to the integral form of (4.1)!

As a consequence, we have for s < t the identity

Dj
sXt = Js,tVj(Xs) . (4.2)

Furthermore, since Xt is independent of the later increments of W , we have
Dj
sXt = 0 for s ≥ t.

By the composition property J0,t = Js,tJ0,s, we can write Js,t = J0,tJ
−1
0,s ,

which will be useful in the sequel. Here, the inverse J−10,t of the Jacobian can be
found by solving the SDE

dJ−10,t = −J−10,t DV0(x) dt−
m∑
i=1

J−10,t DVi(x) ◦ dWi . (4.3)

This follows from the chain rule by noting that if we denote by Ψ(A) = A−1 the map
that takes the inverse of a square matrix, then we have DΨ(A)H = −A−1HA−1.

This discussion is the motivation for the following assumption, which we assume
to be in force from now on:

Assumption 4.2 The vector fields Vi are C∞ and all of their derivatives grow at
most polynomially at infinity. Furthermore, they are such that the solutions to (1.1),
(4.1) and (4.3) satisfy

E sup
t≤T
|xt|p <∞ , E sup

t≤T
|J (k)

0,t |
p <∞ , E sup

t≤T
|J−10,t |

p <∞ ,

for every initial condition x0 ∈ Rn, every terminal time T > 0, every k > 0, and
every p > 0.

Remark 4.3 It is well-known that Assumption 4.2 holds if the Vi are bounded
with bounded derivatives of all orders. However, this is far from being a necessary
assumption.
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Remark 4.4 Under Assumption 4.2, standard limiting procedures allow to justify
(4.2), as well as all the formal manipulations that we will perform in the sequel.

With these assumptions in place, the version of Hörmander’s theorem that we
are going to prove in these notes is as follows:

Theorem 4.5 Let x0 ∈ Rn and let xt be the solution to (1.1). If the vector fields
{Vj} satisfy the parabolic Hörmander condition and Assumption 4.2 is satisfied,
then the law of Xt has a smooth density with respect to Lebesgue measure.

Proof. Denote by A0,t the operator A0,tv =
∫ t
0 Js,tV (Xs)v(s) ds, where v is a

square integrable, not necessarily adapted, Rm-valued stochastic process and V
is the n ×m matrix-valued function obtained by concatenating the vector fields
Vj for j = 1, . . . ,m. With this notation, it follows from (4.2) that the Malliavin
covariance matrix M0,t of Xt is given by

M0,t = A0,tA
∗
0,t =

∫ t

0
Js,tV (Xs)V ∗(Xs)J∗s,t ds .

It follows from (4.2) that the assumptions of Theorem 3.2 are satisfied for the
random variable Xt, provided that we can show that ‖M−1

0,t ‖ has bounded moments
of all orders. This in turn follows by combining Lemma 4.7 with Theorem 4.8
below.

4.2 Proof of Hörmander’s Theorem
The remainder of this section is devoted to a proof of the fact that Hörmander’s
condition is sufficient to guarantee the invertibility of the Malliavin matrix of a
diffusion process. For purely technical reasons, it turns out to be advantageous to
rewrite the Malliavin matrix as

M0,t = J0,tC0,tJ
∗
0,t , C0,t =

∫ t

0
J−10,sV (Xs)V ∗(Xs)(J−10,s )∗ ds ,

where C0,t is the reduced Malliavin matrix of our diffusion process.

Remark 4.6 The reason for considering the reduced Malliavin matrix is that the
process appearing under the integral in the definition of C0,t is adapted to the
filtration generated by Wt. This allows us to use some tools from stochastic calculus
that would not be available otherwise.

Since we assumed that J0,t has inverse moments of all orders, the invertibility
of M0,t is equivalent to that of C0,t. Note first that since C0,t is a positive definite
symmetric matrix, the norm of its inverse is given by

‖C−10,t ‖ =
(

inf
|η|=1
〈η,C0,tη〉

)−1
.

A very useful observation is then the following:
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Lemma 4.7 Let M be a symmetric positive semidefinite n × n matrix-valued
random variable such that E‖M‖p <∞ for every p ≥ 1 and such that, for every
p ≥ 1 there exists Cp such that

sup
|η|=1

P(〈η,Mη〉 < ε) ≤ Cpεp , (4.4)

holds for every ε ≤ 1. Then, E‖M−1‖p <∞ for every p ≥ 1.

Proof. The non-trivial part of the result is that the supremum over η is taken outside
of the probability in (4.4). For ε > 0, let {ηk}k≤N be a sequence of vectors with
|ηk| = 1 such that for every η with |η| ≤ 1, there exists k such that |ηk− η| ≤ ε2. It
is clear that one can find such a set with N ≤ Cε2−2n for some C > 0 independent
of ε. We then have the bound

〈η,Mη〉 = 〈ηk,Mηk〉+ 〈η − ηk,Mη〉+ 〈η − ηk,Mηk〉
≥ 〈ηk,Mηk〉 − 2‖M‖ε2 ,

so that

P
(

inf
|η|=1
〈η,Mη〉 ≤ ε

)
≤ P

(
inf
k≤N
〈ηk,Mηk〉 ≤ 4ε

)
+ P

(
‖M‖ ≥ 1

ε

)
≤ Cε2−2n sup

|η|=1

P
(
〈η,Mη〉 ≤ 4ε

)
+ P

(
‖M‖ ≥ 1

ε

)
.

It now suffices to use (4.4) for p large enough to bound the first term and Chebychev’s
inequality combined with the moment bound on ‖M‖ to bound the second term.

As a consequence of this, Theorem 4.5 is a corollary of:

Theorem 4.8 Consider (1.1) and assume that Assumption 4.2 holds. If the corre-
sponding vector fields satisfy the parabolic Hörmander condition then, for every
initial condition x ∈ Rn, we have the bound

sup
|η|=1

P(〈η,C0,1η〉 < ε) ≤ Cpεp ,

for suitable constants Cp and all p ≥ 1.

Remark 4.9 The choice t = 1 as the final time is of course completely arbitrary.
Here and in the sequel, we will always consider functions on the time interval [0, 1].

Before we turn to the proof of this result, we introduce a very useful notation
which, to the best of the author’s knowledge, was first used in [HM11]. Given a
family A = {Aε}ε∈(0,1] of events depending on some parameter ε > 0, we say
that A is “almost true” if, for every p > 0 there exists a constant Cp such that
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P(Aε) ≥ 1 − Cpε
p for all ε ∈ (0, 1]. Similarly for “almost false”. Given two

such families of events A and B, we say that “A almost implies B” and we write
A⇒ε B if A \B is almost false. It is straightforward to check that these notions
behave as expected (almost implication is transitive, finite unions of almost false
events are almost false, etc). Note also that these notions are unchanged under any
reparametrisation of the form ε 7→ εα for α > 0. Given two families X and Y of
real-valued random variables, we will similarly write X ≤ε Y as a shorthand for
the fact that {Xε ≤ Yε} is “almost true”.

Before we proceed, we state the following useful result, where ‖ · ‖∞ denotes
the L∞ norm and ‖ · ‖α denotes the best possible α-Hölder constant.

Lemma 4.10 Let f : [0, 1]→ R be continuously differentiable and let α ∈ (0, 1].
Then, the bound

‖∂tf‖∞ = ‖f‖1 ≤ 4‖f‖∞max
{

1, ‖f‖
− 1

1+α
∞ ‖∂tf‖

1
1+α
α

}
holds, where ‖f‖α denotes the best α-Hölder constant for f .

Proof. Denote by x0 a point such that |∂tf (x0)| = ‖∂tf‖∞. It follows from the
definition of the α-Hölder constant ‖∂tf‖Cα that |∂tf (x)| ≥ 1

2‖∂tf‖∞ for every x
such that |x−x0| ≤ (‖∂tf‖∞/2‖∂tf‖Cα)1/α. The claim then follows from the fact
that if f is continuously differentiable and |∂tf (x)| ≥ A over an interval I , then
there exists a point x1 in the interval such that |f (x1)| ≥ A|I|/2.

With these notations at hand, we have the following statement, which is essen-
tially a quantitative version of the Doob-Meyer decomposition theorem. Originally,
it appeared in [Nor86], although some form of it was already present in earlier
works. The statement and proof given here are slightly different from those in
[Nor86], but are very close to them in spirit.

Lemma 4.11 Let W be an m-dimensional Wiener process and let A and B be
R and Rm-valued adapted processes such that, for α = 1

3 , one has E(‖A‖α +
‖B‖α)p <∞ for every p. Let Z be the process defined by

Zt = Z0 +

∫ t

0
As ds+

∫ t

0
Bs dW (s) . (4.5)

Then, there exists a universal constant r ∈ (0, 1) such that one has

{‖Z‖∞ < ε} ⇒ε {‖A‖∞ < εr} & {‖B‖∞ < εr} .

Proof. Recall the exponential martingale inequality [RY99, p. 153], stating that if
M is any continuous martingale with quadratic variation process 〈M〉(t), then

P
(

sup
t≤T
|M (t)| ≥ x & 〈M〉(T ) ≤ y

)
≤ 2 exp(−x2/2y) ,
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for every positive T , x, y. With our notations, this implies that for any q < 1 and
any adapted process F , one has the almost implication

{‖F‖∞ < ε} ⇒ε

{∥∥∥∫ ·
0
Ft dW (t)

∥∥∥
∞
< εq

}
. (4.6)

With this bound in mind, we apply Itô’s formula to Z2, so that

Z2
t = Z2

0 + 2

∫ t

0
ZsAs ds+ 2

∫ t

0
ZsBs dW (s) +

∫ t

0
B2
s ds . (4.7)

Since ‖A‖∞ ≤ε ε−1/4 (or any other negative exponent for that matter) by assump-
tion and similarly for B, it follows from this and (4.6) that

{‖Z‖∞ < ε} ⇒ε

{∣∣∣∫ 1

0
As Zs ds

∣∣∣ ≤ ε 3
4

}
&
{∣∣∣∫ 1

0
Bs Zs dW (s)

∣∣∣ ≤ ε 2
3

}
.

Inserting these bounds back into (4.7) and applying Jensen’s inequality then yields

{‖Z‖∞ < ε} ⇒ε

{∫ 1

0
B2
s ds ≤ ε

1
2

}
⇒

{∫ 1

0
|Bs| ds ≤ ε

1
4

}
.

We now use the fact that ‖B‖α ≤ε ε−q for every q > 0 and we apply Lemma 4.10
with ∂tf (t) = |Bt| (we actually do it component by component), so that

{‖Z‖∞ < ε} ⇒ε {‖B‖∞ ≤ ε
1
17 } ,

say. In order to get the bound on A, note that we can again apply the exponential
martingale inequality to obtain that this “almost implies” the martingale part in (4.5)
is “almost bounded” in the supremum norm by ε

1
18 , so that

{‖Z‖∞ < ε} ⇒ε

{∥∥∥∫ ·
0
As ds

∥∥∥
∞
≤ ε

1
18

}
.

Finally applying again Lemma 4.10 with ∂tf (t) = At, we obtain that

{‖Z‖∞ < ε} ⇒ε {‖A‖∞ ≤ ε1/80} ,

and the claim follows with r = 1/80.

Remark 4.12 By making α arbitrarily close to 1/2, keeping track of the different
norms appearing in the above argument, and then bootstrapping the argument, it is
possible to show that

{‖Z‖∞ < ε} ⇒ε {‖A‖∞ ≤ εp} & {‖B‖∞ ≤ εq} ,

for p arbitrarily close to 1/5 and q arbitrarily close to 3/10. This seems to be a very
small improvement over the exponent 1/8 that was originally obtained in [Nor86],
but is certainly not optimal either. The main reason why our result is suboptimal is
that we move several times back and forth between L1, L2, and L∞ norms. (Note
furthermore that our result is not really comparable to that in [Nor86], since Norris
used L2 norms in the statements and his assumptions were slightly different from
ours.)
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We now have all the necessary tools to prove Theorem 4.8:

Proof of Theorem 4.8. We fix some initial condition x0 ∈ Rn and some unit vector
η ∈ Rn. With the notation introduced earlier, our aim is then to show that

{〈η,C0,1η〉 < ε} ⇒ε φ , (4.8)

or in other words that the statement 〈η,C0,1η〉 < ε is “almost false”. As a shorthand,
we introduce for an arbitrary smooth vector field F on Rn the process ZF defined
by

ZF (t) = 〈η, J−10,t F (xt)〉 ,

so that

〈η,C0,1η〉 =
m∑
k=1

∫ 1

0
|ZVk (t)|2 dt ≥

m∑
k=1

(∫ 1

0
|ZVk (t)| dt

)2
. (4.9)

The processes ZF have the nice property that they solve the stochastic differential
equation

dZF (t) = Z[F,V0](t) dt+
m∑
i=1

Z[F,Vk](t) ◦ dWk(t) , (4.10)

which can be rewritten in Itô form as

dZF (t) =
(
Z[F,V0](t) +

m∑
k=1

1

2
Z[[F,Vk],Vk](t)

)
dt+

m∑
i=1

Z[F,Vk](t) dWk(t) . (4.11)

Since we assumed that all derivatives of the Vj grow at most polynomially, we
deduce from the Hölder regularity of Brownian motion that, provided that the
derivatives of F grow at most polynomially fast, ZF does indeed satisfy the as-
sumptions on its Hölder norm required for the application of Norris’s lemma. The
idea now is to observe that, by (4.9), the left hand side of (4.8) states that ZF is
“small” for every F ∈ V0. One then argues that, by Norris’s lemma, if ZF is small
for every F ∈ Vk then, by considering (4.10), it follows that ZF is also small for
every F ∈ Vk+1. Hörmander’s condition then ensures that a contradiction arises at
some stage, since ZF (0) = 〈F (x0), ξ〉 and there exists k such that Vk(x0) spans all
of Rn.

Let us make this rigorous. It follows from Norris’s lemma and (4.11) that one
has the almost implication

{‖ZF ‖∞ < ε} ⇒ε {‖Z[F,Vk]‖∞ < εr} & {‖ZG‖∞ < εr} ,

for k = 1, . . . ,m and for G = [F, V0] + 1
2

∑m
k=1[[F, Vk], Vk]. Iterating this bound

a second time, this time considering the equation for ZG, we obtain that

{‖ZF ‖∞ < ε} ⇒ε {‖Z[[F,Vk],V`]‖∞ < εr
2} ,
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so that we finally obtain the implication

{‖ZF ‖∞ < ε} ⇒ε {‖Z[F,Vk]‖∞ < εr
2} , (4.12)

for k = 0, . . . ,m.
At this stage, we are basically done. Indeed, combining (4.9) with Lemma 4.10

as above, we see that

{〈η,C0,1η〉 < ε} ⇒ε {‖ZVk‖∞ < ε1/5} .

Applying (4.12) iteratively, we see that for every k > 0 there exists some qk > 0
such that

{〈η,C0,1η〉 < ε} ⇒ε

⋂
V ∈Vk

{‖ZV ‖∞ < εqk} .

Since ZV (0) = 〈η, V (x0)〉 and since there exists some k > 0 such that Vk(x0) =
Rn, the right hand side of this expression is empty for some sufficiently large value
of k, which is precisely the desired result.
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