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The aim of this note is to present an elementary proof of a variation of Harris’
ergodic theorem of Markov chains. This theorem, dating back to the fifties [Har56] es-
sentially states that a Markov chain is uniquely ergodic if it admits a “small” set (in a
technical sense to be made precise below) which is visited infinitely often. This gives
an extension of the ideas of Doeblin to the unbounded state space setting. Often this is
established by finding a Lyapunov function with “small” level sets [Has80, MT93]. If
the Lyapunov function is strong enough, one has a spectral gap in a weighted supremum
norm [MT92, MT93]. In particular, its transition probabilities converge exponentially fast
towards the unique invariant measure, and the constant in front of the exponential rate is
controlled by the Lyapunov function [MT93].

Traditional proofs of this result rely on the decomposition of the Markov chain into
excursions away from the small set and a careful analysis of the exponential tail of the
length of these excursions [Num84, Cha89, MT92, MT93]. There have been other vari-
ations which have made use of Poisson equations or worked at getting explicit constants
[KM05, DMR04, DMLM03]. The present proof is very direct, and relies instead on intro-
ducing a family of equivalent weighted norms indexed by a parameter β and to make an
appropriate choice of this parameter that allows to combine in a very elementary way the
two ingredients (existence of a Lyapunov function and irreducibility) that are crucial in
obtaining a spectral gap. Use of a weighted total-variation norm has been important since
[MT92].

The original motivation of this proof was the authors’ work on spectral gaps in
Wasserstein metrics. The proof presented in this note is a version of our reasoning in
the total variation setting which we used to guide the calculations in [HM08]. While we
initially produced it for this purpose, we hope that it will be of interest in its own right.

1. Setting and main result
Throughout this note, we fix a measurable space X and a Markov transition kernel P(x, ·)
on X. We will use the notation P for the operators defined as usual on both the set of
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bounded measurable functions and the set of measures of finite mass by(
Pϕ
)
(x) =

∫
X

ϕ(y)P(x, dy) ,
(
Pµ
)
(A) =

∫
X

P(x,A)µ(dx) .

Hence we are using P both to denote the action on functions and its duel action on mea-
sure. Note that P extends trivially to measurable functions ϕ : X → [0,+∞]. We first
assume that P satisfies the following geometric drift condition:

Assumption 1. There exists a function V : X → [0,∞) and constants K ≥ 0 and
γ ∈ (0, 1) such that

(PV )(x) ≤ γV (x) +K , (1)

for all x ∈ X.

Remark 1.1. One could allow V to also take the value +∞. However, since we do not
assume any particular structure on X, this case can immediately be reduced to the present
case by replacing X by {x : V (x) <∞}.

Assumption 1 ensures that the dynamics enters the “center” of the state space reg-
ularly with tight control on the length of the excursions from the center. We now assume
that a sufficiently large level set of V is sufficiently “nice” in the sense that we have a
uniform “minorization” condition reminiscent of Doeblin’s condition, but localized to the
interior of the level set.

Assumption 2. There exists a constant α ∈ (0, 1) and a probability measure ν so that

inf
x∈C
P(x, · ) ≥ αν( · ) ,

with C = {x ∈ X : V (x) ≤ R} for some R > 2K/(1 − γ) where K and γ are the
constants from Assumption 1.

In order to state the version Harris’ theorem under consideration, we introduce the
following weighted supremum norm:

‖ϕ‖ = sup
x

|ϕ(x)|
1 + V (x)

. (2)

With this notation at hand, one has:

Theorem 1.2. If Assumptions 1 and 2 hold, then P admits a unique invariant measure
µ?. Furthermore, there exist constants C > 0 and γ ∈ (0, 1) such that the bound

‖Pnϕ− µ?(ϕ)‖ ≤ Cγn‖ϕ− µ?(ϕ)‖

holds for every measurable function ϕ : X→ R such that ‖ϕ‖ <∞.

While this result is well-known, the proofs found in the literature are often quite
involved and rely on careful estimates of the return times to small sets, combined with a
clever application of Kendall’s lemma. See for example [MT93, Section 15].

The aim of this note is to provide a very short and elementary proof of Theorem 1.2
based on a simple trick. Instead of working directly with (2), we define a whole family of
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weighted supremum norms depending on a scale parameter β > 0 that are all equivalent
to the original norm (2):

‖ϕ‖β = sup
x

|ϕ(x)|
1 + βV (x)

.

We also define the associated dual metric ρβ on probability measures given by

ρβ(µ1, µ2) = sup
ϕ:‖ϕ‖β≤1

∫
X

ϕ(x)
(
µ1 − µ2

)
(dx) . (3)

It is well-known that ρβ is nothing but a weighted total variation distance:

ρβ(µ1, µ2) =
∫
X

(
1 + βV (x)

)
|µ1 − µ2|(dx) .

With these notations, our main result is:

Theorem 1.3. If Assumptions 1 and 2 hold, then there exists ᾱ ∈ (0, 1) and β > 0 so that

ρβ(Pµ1,Pµ2) ≤ ᾱρβ(µ1, µ2)

for any probability measure µ1 and µ2 on X. In particular, for any α0 ∈ (0, α) and γ0 ∈
(γ+2K/R, 1) one can choose β = α0/K and ᾱ = (1−(α−α0))∨(2+Rβγ0)/(2+Rβ).

Remark 1.4. The interest of this result lies in the fact that it is possible to tune β in such a
way that P is a strict contraction for the distance ρβ . In general, this does not imply that
P is a contraction for ρ1, say, even though the equivalence of the norms ‖ · ‖β does of
course imply that there exists n > 0 such that Pn is such a contraction.

2. Alternative formulation of metric ρβ

We now introduce an alternative definition of the weighted total variation norm ρβ . We
begin by defining a metric dβ between points in X by

dβ(x, y) =

{
0 x = y

2 + βV (x) + βV (y) x 6= y

Though sightly odd looking, the reader can readily verify that since V ≥ 0, dβ indeed
satisfies the axioms of a metric. This metric in turn induces a Lipschitz seminorm on
measurable functions and a metric on probability measures defined respectively by

|||ϕ|||β = sup
x 6=y

|ϕ(x)− ϕ(y)|
dβ(x, y)

,

dβ(µ1, µ2) = sup
ϕ:|||ϕ|||β≤1

∫
ϕ(x)

(
µ1 − µ2

)
(dx) .

It turns out that these norms are almost identical to the ones from the previous section.
More precisely, one has:

Lemma 2.1. One has the identity |||ϕ|||β = infc∈R ‖ϕ+ c‖β . In particular, dβ = ρβ .
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Proof. It is obvious that |||ϕ|||β ≤ ‖ϕ‖β and therefore |||ϕ|||β ≤ infc∈R ‖ϕ + c‖β , so it
remains to show the reverse inequality.

Given any ϕ with |||ϕ|||β ≤ 1, we set c = infx
(
1 + βV (x)−ϕ(x)

)
. Observe that for

any x and y, ϕ(x) ≤ |ϕ(y)| + |ϕ(x) − ϕ(y)| ≤ |ϕ(y)| + 2 + βV (x) + βV (y). Hence
1 + βV (x) − ϕ(x) ≥ −1 − βV (y) − |ϕ(y)|. Since there exists at least one point with
V (y) <∞ we see that c is bounded from below and hence |c| <∞.

Observe now that

ϕ(x) + c ≤ ϕ(x) + 1 + βV (x)− ϕ(x) = 1 + βV (x) ,

and

ϕ(x) + c = inf
y
ϕ(x) + 1 + βV (y)− ϕ(y)

≥ inf
y

1 + βV (y)− |||ϕ|||β · dβ(x, y) ≥ −(1 + βV (x)) ,

so that |ϕ(x) + c| ≤ 1 + βV (x) as required.
It follows that the sets {ϕ : ‖ϕ‖β ≤ 1} and {ϕ : |||ϕ|||β ≤ 1} only differ by additive

constants, so that one has indeed dβ = ρβ . �

Remark 2.2. Note that of course dβ = ρβ only for probability measures, or at least
positive measures of equal mass. Otherwise, dβ is +∞ in general, while ρβ need not be.

3. Proof of main theorem
Theorem 3.1. If Assumptions 1 and 2 hold there exists an ᾱ ∈ (0, 1) and β > 0 such that

|||Pϕ|||β ≤ ᾱ|||ϕ|||β .
Actually, setting γ0 = γ + 2K/R < 1, for any α0 ∈ (0, α) one can choose β = α0/K
and ᾱ = (1− α+ α0) ∨ (2 +Rβγ0)/(2 +Rβ).

Proof. Fix a test function ϕ with |||ϕ|||β ≤ 1. By Lemma 2.1, we can assume without loss
of generality that one also has ‖ϕ‖β ≤ 1. The claim then follows if we can exhibit ᾱ < 1
so that

|Pϕ(x)− Pϕ(y)| ≤ ᾱdβ(x, y) .
If x = y, the claim is true. Henceforth we assume x 6= y. We begin by assuming

that x and y are such that

V (x) + V (y) ≥ R . (4)

Fixing γ0 as in the statement of the theorem, for any β > 0 we set γ1 = (2+βRγ0)/(2+
βR). Observe that for β ∈ (0, 1) and R > 0, one has γ1 ∈ (γ0, 1). With these choices,
we have from (1) and (2) the bound

|Pϕ(x)− Pϕ(y)| ≤ 2 + βPV (x) + βPV (y)

≤ 2 + βγV (x) + βγV (y) + 2βK

≤ 2 + βγ0V (x) + βγ0V (y)

≤ 2γ1 + βγ1V (x) + βγ1V (y) = γ1dβ(x, y) .
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The third line follows from our choice of γ0 and the fact that by (4) we know that 2K ≤
(γ0−γ)(V (x)+V (y)). The last line follows from the fact that 2(1−γ1) = βR(γ1−γ0) ≤
β(γ1 − γ0)(V (x) + V (y)) given our choice of γ1. We emphasise that up to now β could
be any positive number; only the precise value of γ1 depends on it (and gets “worse” for
small values of β). The second part of the proof will determine a choice of β > 0.

Now consider the case of x and y such that V (x) + V (y) ≤ R and hence x, y ∈ C.
For such x and y we define the Markov transition P̃ by P̃(x, · ) = 1

1−αP(x, · ) −
α

1−αν( · ). Now we have Pϕ(x) = (1 − α)P̃ϕ(x) + α
∫
ϕdν and Pϕ(y) = (1 −

α)P̃ϕ(y) +α
∫
ϕdν. Subtracting the second of these expressions from the first and using

that since V is a non-negative function P̃V (x) ≤ 1
1−αPV (x) produces

|Pϕ(x)− Pϕ(y)| = (1− α)
∣∣P̃ϕ(x)− P̃ϕ(y)

∣∣
≤ (1− α)2 + (1− α)β(P̃V (x) + P̃V (y))

≤ (1− α)2 + β(PV (x) + PV (y))

≤ (1− α)2 + γβV (x) + γβV (y) + 2βK .

Hence fixing β = α0/K for any α0 ∈ (0, α) and setting and γ2 = (1− (α− α0)) ∨ γ ∈
(0, 1) produces

|Pϕ(x)− Pϕ(y)| ≤ 2(1− (α− α0)) + γβV (x) + γβV (y)

≤ γ2dβ(x, y) .

Setting ᾱ = γ1 ∨ γ2 and recalling that γ1 ≥ γ concludes the proof. �

Theorem 1.3 now follows as a corollary since dβ = ρβ and dβ is the norm dual
to ||| · |||β . In order to conclude that Theorem 1.2 holds, it only remains to show that our
assumptions imply that an invariant measure µ? actually exists and that the integral of V
with respect to µ? is finite.

3.1. Existence of an invariant measure
We have already shown that Assumptions 1 and 2 allow to prove that for some β > 0,
P is a strict contraction in the weighted total variation metric ρβ defined by (3). We now
show that the same assumptions are also sufficient to ensure the existence of an invariant
measure:

Theorem 3.2. If Assumptions 1 and 2 hold then there exists a probability measure µ∞ on
X such that

∫
V dµ∞ <∞ and which is invariant in that Pµ∞ = µ∞.

Proof. Fixing any x ∈ X, for n ∈ N define µn = Pnδx. By Theorem 1.3, we know that
for some ᾱ ∈ (0, 1) and some β > 0,

ρβ(µn+1, µn) ≤ αnρβ(µ1, δx) .

Hence, µn is a Cauchy sequence. Since ρβ is complete for the space of probability mea-
sures integrating V (because the total variation distance is complete for the space of mea-
sures with finite mass) there exists a probability measure µ∞ so that ρβ(µn, µ∞)→ 0 as
n→∞. Since this implies that µn → µ∞ in total variation and P is always a contraction
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in the total variation distance, it follows that Pµ∞ = limPµn = limµn+1 = µ∞ as
required. �

3.2. A slightly different set of assumptions
Many results in the theory of Harris chains results are proved under a slightly different set
of assumptions. The Lyapunov function condition in Assumption 1 is replaced with the
following:

Assumption 3. There exists a function V : X → [1,∞) and constants b ≥ 0, γ̃ ∈ (0, 1)
and a subset S ⊂ X such that

(PV )(x) ≤ γ̃V (x) + b1S(x) , (5)

for all x ∈ X.

Clearly Assumption 3 implies Assumption 1 with K = b. The question is whether
Assumption 2 holds with that choice of K and with C defined as in Assumption 2. If it
does then our main theorem holds. However, Assumption 3 is most naturally paired with
the following modified version of Assumption 2.

Assumption 4. There exists a constant α̃ ∈ (0, 1] and a probability measure ν̃ so that the
lower bound

inf
x∈S
P(x, · ) ≥ α̃ν̃( · )

holds. Here, the set S is the same as in Assumption 3.

It is relatively clear that Assumptions 1 and 2 together imply Assumptions 3 and 4.
In particular, if one picks a γ̄ ∈ (γ, 1) sufficiently close to one, then R ≥ K/(γ̄ − γ) and
setting S = {x : V (x) ≤ K} we see that the desired implication holds.

Remark 3.3. In general, one cannot hope for Assumptions 4 and 3 to imply Assumptions 1
and 2 and hence the existence of a spectral gap without any further assumptions. A trivial
example is given by X = {0, 1}with the (deterministic) transition probabilities P(x, ·) =
δ1−x. This Markov operator has spectrum {−1, 1} and has therefore no spectral gap. On
the other hand, Assumptions 4 and 3 are satisfied with α̃ = 1, γ̃ = 1/2, and b = 3/2 if
one makes for example the choice S = {0}, ν̃ = δ1, and V (x) = 1 + x.

In spite of the preceding remark, we are now going to show that Assumptions 4
and 3 are essentially equivalent to Assumptions 1 and 2 from the previous section. More
precisely, for N > 0, define the “averaged” Markov operator

Q =
1

N + 1

N∑
k=0

Pk .

Then we have:

Theorem 3.4. If P satisfies Assumptions 4 and 3, then there exists a choice of N such
that Q satisfies Assumptions 1 and 2.
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Proof. Fix some arbitrary R with R > 2b/(1 − γ̃). Our aim is to show that we can find
N > 0, a probability measure ν and a constant α > 0 such thatQ(x, ·) ≥ αν(·) for every
x with V (x) ≤ R.

Iterating (5), we find that one has the bound

1 ≤ Pn+1V ≤ γ̃n+1V + b

n∑
k=0

γ̃kPn−k1S , (6)

so that, on the set Sn = {x : V (x) ≤ γ̃−n−1/2}, one has the lower bound

inf
x∈Sn

n∑
k=0

γ̃kPn−k(x, S) ≥ 1
2b

. (7)

In particular this implies that for every x ∈ X, there exists n such that Pn(x, S) > 0.
Combining this with our two assumptions shows that

∫
V (x)ν̃(dx) = C < ∞ so that,

integrating (6) with respect to ν̃, we obtain

1 ≤ Cγ̃n+1 + b

n∑
k=0

γ̃k
(
Pn−kν̃

)
(S) .

Choosing n sufficiently large then implies the existence of some ` > 0 such that
(
P`−1ν̃

)
(S) >

0. Combining this with Assumption 3 shows that there exists α̂ > 0 such that P`ν̃ ≥ α̂ν̃.
Setting now ν = 1

`

∑`−1
k=0 Pkν̃, it follows that one has the bound

Pν =
1
`

`−1∑
k=1

Pkν̃ +
1
`
P`ν̃ ≥ 1

`

`−1∑
k=1

Pkν̃ +
α̂

`
ν̃ ≥ α̂ν .

In particular, this implies that for every m ≥ 1 there exists a constant αm such that the
lower bound

inf
x∈S

m+∑̀
k=m

Pk(x, ·) ≥ αmν(·) (8)

holds. Let now n be sufficiently large such that γ̃−n−1/2 ≥ R and set N = n + 1 + `.
Combining (7) and (8) then yields the desired result. �

Remark 3.5. Keeping track of the constants appearing in the proof of the previous result,
we see that one can choose for example any integer N such that

N > 1 + log
( 2b

1− γ̃

∫
V (x) ν̃(dx)

)
/ log γ̃ .
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