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Abstract
We introduce a new concept of solution to the KPZ equation which is shown to
extend the classical Cole-Hopf solution. This notion provides a factorisation of the
Cole-Hopf solution map into a “universal” measurable map from the probability
space into an explicitly described auxiliary metric space, composed with a new
solution map that has very good continuity properties. The advantage of such a
formulation is that it essentially provides a pathwise notion of a solution, together
with a very detailed approximation theory. In particular, our construction com-
pletely bypasses the Cole-Hopf transform, thus laying the groundwork for proving
that the KPZ equation describes the fluctuations of systems in the KPZ universality
class.

As a corollary of our construction, we obtain very detailed new regularity
results about the solution, as well as its derivative with respect to the initial
condition. Other byproducts of the proof include an explicit approximation to the
stationary solution of the KPZ equation, a well-posedness result for the Fokker-
Planck equation associated to a particle diffusing in a rough space-time dependent
potential, and a new periodic homogenisation result for the heat equation with a
space-time periodic potential. One ingredient in our construction is an example of
a non-Gaussian rough path such that the area process of its natural approximations
needs to be renormalised by a diverging term for the approximations to converge.
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2 INTRODUCTION

1 Introduction

The aim of this article is to construct and describe solutions to the KPZ equation.
At a purely formal level, this equation is given by

∂th = ∂2
xh+ λ(∂xh)2 −∞+ ξ , (1.1)

where “∞” denotes an “infinite constant” required to renormalise the divergence
appearing in the term (∂xh)2 and λ > 0 is a “coupling strength”. Here, h(x, t) is a
continuous stochastic process with x ∈ S1 (which we usually identify with [0, 2π],
but we will always assume periodic boundary conditions) and ξ denotes space-time
white noise which is a distribution-valued Gaussian field with correlation function

Eξ(x, t)ξ(y, s) = 4πδ(x− y)δ(t− s) . (1.2)

The prefactor 1 in front of the term ∂2
xh and the strange-looking prefactor 4π in the

definition of ξ are normalisation constants which could be set to any positive value
by rescaling time, h and λ, but our particular choice will simplify some expressions
in the sequel.

At this stage, it is of course completely unclear what (1.1) actually means and,
in a way, this is the main question that will be addressed in this article. Originally,
the equation (1.1) was proposed by Kardar, Parisi and Zhang as a model of surface
growth [KPZ86]. However, it was later realised that it is a universal object that
describes the fluctuations of a number of strongly interacting models of statistical
mechanics with space-time dependencies. For example, it is known rigorously
to arise as the fluctuation process for the weakly asymmetric simple exclusion
process [BG97], as well as the partition function for directed polymer models
[Kar85, IS11, ACQ11]. More generally, the solution to the KPZ equation is expected
to describe the fluctuations of a much larger class of systems, namely the systems in
the KPZ universality class which is associated to the dynamic scaling exponents 3

2 ,
see for example [BQS11]. We refer to the excellent review article [Cor12] for many
more references and a more detailed historical account of the KPZ equation.

Over the past ten years or so, substantial progress has been made in the un-
derstanding of the solutions to (1.1) (especially in the extended case x ∈ R), but
very few results had been established rigorously until an explosion of recent re-
sults yielding exact formulae for the one-point distribution of solutions to (1.1).
A foundation for these results was laid by the groundbreaking work of Johansson
[Joh00], who noted a link between discrete approximations to (1.1) and random
matrix theory, and who used this to prove that the Tracy-Widom distribution arises
as the long-time limit of this discrete model. One stunning recent result was the
rigorous proof in [BQS11, ACQ11, CQ10] of the fact that, also for the continuous
model (1.1), one has u(t) ≈ t1/3 for large times (this had already been conjectured
in [KPZ86] and the results in [Joh00] provided further evidence, but the lack of
a good approximation theory for (1.1) had defeated earlier attempts) and that, at
least for the “infinite wedge” and the “half-Brownian” initial distributions, the law
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of t−1/3u(0, t), appropriately recentred, does converge, as t → ∞, to the Tracy-
Widom distribution. Another very recent achievement exploiting this link is the
series of articles [SS09, SS10a, ACQ11, SS10b] in which the authors provide an
exact formula for the law of the solution to the KPZ equation at a fixed time and
fixed spatial location. These results built on a number of previous results using
related ideas, in particular Tracy and Widom’s exact formulae for the asymmetric
simple exclusion process [TW08a, TW08b, TW09].

Together with this explosion of exact results on the solutions to (1.1), there
has been renewed interest in giving a rigorous interpretation of (1.1). Ever since
the seminal work of Bertini and Giacomin [BG97], there has been an accepted
notion of solution to (1.1) via the so-called “Cole-Hopf transform”, which had long
been known to be useful in the study of the deterministic KPZ / Burgers equation
[Hop50, Col51]. The idea is to consider the solution Z to the linear multiplicative
stochastic heat equation

dZ = ∂2
xZ dt+ λZ dW (t) , (1.3)

where W is a cylindrical Brownian motion on L2(S1) (i.e. it is the time integral of
the space-time white noise ξ). Here, the term Z dW (t) should be interpreted as an
Itô integral. It is well-known (see for example the monograph [DPZ92]) that the
mild form of (1.3) admits a unique positive solution in a suitable space of adapted
processes. One then defines the process h to be given by

h(x, t) = λ−1 logZ(x, t) . (1.4)

In the sequel, we denote this solution by h = SCH(h0, ω), where h0 = λ−1 logZ0

is an initial condition for (1.1). The map SCH is a jointly measurable map from
C × Ω into C(R+, Cα) for every α < 1

2 .
There are two powerful arguments for this to be the “correct” notion of solution

to (1.1). First, one can consider the solution Zε to (1.3) with W replaced by Wε,
which is obtained by multiplying the kth Fourier component with ϕ(εk) for some
smooth cut-off function ϕ with compact support and ϕ(0) = 1. Defining hε via (1.4)
and applying Itô’s formula, it is then possible to verify that hε solves the equation

∂thε = ∂2
xhε + λ(∂xhε)2 − λCε + ξε , (1.5)

where the constant Cε is given by Cε =
∑

k∈Z ϕ
2(kε) ≈ 1

ε

∫
R ϕ

2(x) dx. Since
Zε → Z as ε→ 0 by standard SPDE arguments, it follows that hε converges to a
limiting process h which, in light of (1.5), does indeed formally solve (1.1).

The second argument in favour of the Cole-Hopf solution is that, as shown
in [BG97], the fluctuations of the stationary weakly asymmetric simple exclusion
process (WASEP) converge, under a suitable rescaling, to the Cole-Hopf solution to
(1.1). This result was further improved recently in [ACQ11] where, among other
things, the authors show that the fluctuations for the WASEP with “infinite wedge”
initial condition are also given by the Cole-Hopf solution.
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The problem with the Cole-Hopf solution is that it does not provide a satisfactory
theory of approximations to (1.1). Indeed, all approximations to (1.1) must first be
reinterpreted as approximations to (1.3), which is not always convenient. While
it works well for the approximation by mollification of the noise that we just
mentioned, it does not work at all for other natural approximations to (1.1), like for
example adding a small amount of hyperviscosity or performing a spatio-temporal
mollification of the noise. This is also why only the fluctuations of the WASEP have
so far been shown to converge to the solutions to the KPZ equation: this is one of
the rare discrete systems that behave well under the corresponding version of the
Cole-Hopf transform.

As a consequence, there have been a number of, unfortunately unsuccessful,
attempts over the past decade to provide a more natural notion of solution without
making use of the Cole-Hopf transform. For example, as illustrated by (1.5),
the Cole-Hopf solution really corresponds to an interpretation of the nonlinearity
as a Wick product ∂xh � ∂xh, where the Wick product is defined relative to the
Gaussian structure given on the space of solutions by the linearised equation (i.e.
the one where we simply drop the nonlinearity altogether). One could also imagine
interpreting the nonlinearity as a Wick product with respect to the Gaussian structure
given on the underlying probability space by the driving noise ξ. This yields a
different concept of solution that was studied in [HØUZ96, Cha00]. In the spatially
extended situation, this solution appears however to behave in a non-physical way
in the sense that it does not exhibit the correct scaling exponents.

Following a similar line of though, one may try to apply “standard” renormali-
sation theory to interpret (1.1). This programme was initiated in [DPDT07], where
the authors were able to treat a mollified version of (1.1), namely

∂th = ∂2
xh+ (−∂2

x)−2α((∂xh)2 −∞) + (−∂2
x)−αξ . (1.6)

Unfortunately, the techniques used there seem to break down at α = 1
8 . We refer

to Remark 5.4 below for an explanation why 1
8 is one natural barrier arising for

“conventional” techniques and what other barriers (the largest of which being the
passage from α > 0 to α = 0) must be crossed before reaching (1.1).

Another way to make sense of (1.1) could be to formulate a corresponding
martingale problem. This is a technique that was explored in [Ass02] for example.
Very recently, a somewhat related notion of “weak energy solution” was introduced
in [GJ10] and further refined in [Ass11], but there is so far no corresponding
uniqueness result. Furthermore, this notion does not seem to provide any way of
distinguishing solutions that differ by spatial constants.

Some recent progress has also been made in providing an approximation theory
to variants of (1.3), but the results are only partial [PP12, Bal11]. To a large extent,
this long-standing problem is solved (or at least a programme is established on how
to solve some of its variants) by the results of this article. In particular, we provide
a “pathwise” interpretation of (1.1), together with a robust approximation theory.

Before we state the theorem, we introduce some notation. We denote by C̄α the
space Cα to which we add a “point at infinity”∞ with neighbourhoods of the form
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{h : ‖h‖α > R} ∪ {∞}, which turns C̄α into a Polish space. We need to work
with the space C̄α since our construction only provides local solution so that, for a
given Ψ ∈ X and a given initial condition h0, we cannot guarantee that solutions
will not explode in finite time. However, if solutions do explode in finite time, it is
always because the Cα-norm diverges. With this terminology in place, our result
can be stated as follows:

Theorem 1.1 There exists a Polish space X , a measurable map Ψ: Ω → X and,
for every β ∈ (0, 1

2 ), a lower semicontinuous map T?: Cβ × X → (0,+∞] and a
map SR: Cβ ×X → C(R+, C̄

1
2
−β) such that

(t, h0,Ψ) 7→ SR(h0,Ψ)(t) ,

is continuous on all triples such that t ∈ (0, T?(h0,Ψ)). Furthermore, for every
h0 ∈ Cβ , one has T?(h0,Ψ(ω)) = +∞ almost surely and the identity

SCH(h0, ω) = SR(h0,Ψ(ω)) ,

holds for almost every ω ∈ Ω.
Finally, there exists a separable Fréchet spaceW such that X ⊂ W (with the

topology of X given by the induced topology ofW) and such that, for every ` ∈ W?,
the random variable `(Ψ(·)) belongs to the union of the first four Wiener chaoses of
ξ (see Section A.1 for a short reminder of the definition of the Wiener chaos).

Remark 1.2 The letter ‘R’ in SR stands for “Rough”. It will become clear later
why we chose this terminology.

Remark 1.3 Loosely speaking, our result states that one can find a Polish space X
and a jointly continuous map SR such that the following diagram commutes, where
arrows without label denote the identity:

X × Cα C(R+, Cα)

·

Ω × Cα C(R+, Cα)

Ψ

SR

SCH

(1.7)

As it turns out, SR also extends the usual (deterministic) notion SD of solution to
the KPZ equation with regular data:

∂th = ∂2
xh+ λ(∂xh)2 + g(x, t) . (1.8)

In other words, it is possible to find a map Φ such that the following commutes:

X × Cα C(R+, Cα)

·

C(R+, C) × Cα C(R+, Cα)

Φ

SR

SD

(1.9)
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where the first argument to SD is the function g in (1.8). Interestingly, the choice
of Φ in (1.9) is not unique. As we will see later, the map Ψ in (1.7) is given by the
limit in probability of maps Φε that are admissible for (1.9), applied to ξε − Cε for
a suitable mollification ξε of ξ and constant Cε →∞.

Remark 1.4 The space X will be given explicitly later on, but it is not a linear
space. It is indeed not difficult to convince oneself that, even though the probability
space associated to ξ carries a natural linear structure (one could take it to be given
by the space of distributions over S1 × R for example), it is not possible to find a
norm on it that would make the map SCH continuous.

Similarly, the reason why we did not simply formulate the statement of the
theorem with X replaced by W from the beginning is that, even though SR is
continuous on X , it does not extend continuously to all ofW .

We also have a more explicit description of SR as the solution to a fixed point
argument, which in particular implies that the Cole-Hopf solutions of the KPZ
equation can be realised as a continuous random dynamical system. This can for
example be formulated as follows:

Proposition 1.5 Fix β ∈ (0, 1
2 ). For every T > 0 there exists a Banach space B?,T

with a canonical projection π:B?,T → C([0, T ], C
3
2
−β), a closed algebraic variety

Y?,T ⊂ X × B?,T , continuous maps h?:X → C([0, T ], C
1
2
−β) and

M̂: Cβ × Y?,T → B?,T ,

as well as a lower semi-continuous map T?: Cβ ×X → (0,+∞] with the following
properties:

• The map M̂ leaves Y?,T invariant in the sense that (Ψ,M̂(h,Ψ, v)) ∈ Y?,T
for every pair (Ψ, v) ∈ Y?,T and every h ∈ Cβ .

• For every Ψ ∈ X , the space BΨ,T = {v ∈ B?,T : (Ψ, v) ∈ Y?,T } is a
Banach subspace of B?,T .

• For every h0 ∈ Cβ , Ψ0 ∈ X , and T < T?(h0,Ψ) and neighbourhoods U of
h0 and V of Ψ0 such that, for every Ψ ∈ V and every h ∈ U , the restriction
of SR(h,Ψ) to [0, T ] can be decomposed as

SR(h,Ψ)|[0,T ] = h?(Ψ)|[0,T ] + πŜR(h,Ψ) , (1.10)

where ŜR:U × V → C([0, T ], C
1
2
−β) is a continuous map that is the unique

solution in BΨ,T to the fixed point problem

M̂(h,Ψ, ŜR(h,Ψ)) = ŜR(h,Ψ) .

• If T?(h,Ψ) <∞, then limt→T? ‖SR(h,Ψ)(t)‖β =∞ for every β > 0.
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• There exists a group of continuous transformations Θt:X → X such that h?

and ŜR satisfy the cocycle property in the sense that the identities

h?(Ψ)(t+s) = h?(ΘtΨ)(s) , ŜR(h,Ψ)(t+s) = ŜR(ŜR(h,Ψ)(t),ΘtΨ)(s) ,

hold for every Ψ ∈ X , every h0 ∈ Cβ and every s, t > 0 with s+ t < T?.

Remark 1.6 The reason for requiring the decomposition (1.10) instead of writing
SR itself as a solution to a fixed point problem is that h? does not belong to B?,T in
general. Note also that, quite unusually in the theory of partial differential equations,
the space BΨ,T in which we effectively solve our fixed point problem depends on
the choice of Ψ!

Remark 1.7 In principle, Proposition 1.5 only provides a description of solutions
up to the explosion time T?. It is then natural to simply set SR(h,Ψ)(t) = ∞ for
t > T?(h,Ψ), which yields a continuous path by the definition of the topology on
C̄

1
2
−β and the fact that solutions explode when approaching T?. In order to prove

Theorem 1.1, it is therefore sufficient to construct ŜR and h? with the properties
stated in Proposition 1.5 and such that SCH = πŜR + h? for every initial condition
and almost every realisation of Ψ. The fact that we know a priori that Cole-
Hopf solutions are defined for all times ensures that, for every h ∈ Cβ , one has
T?(h,Ψ(ω)) = +∞ almost surely, but we cannot rule out the existence of a non-
trivial exceptional set that may depend on the initial condition.

Remark 1.8 As an abstract result, it is not clear how useful Proposition 1.5 really is.
However, we will provide very explicit constructions of all the quantities appearing
in its statement. As a consequence, in order to approximate the Cole-Hopf solutions
to (1.1), it is enough to provide a good enough approximation to the fixed point map
M in a suitable space, as well as an approximation to the map Ψ. For an example
of how such programme can be implemented in the context of a different equation
with similar regularity properties, see [HMW12].

Another drawback of the Cole-Hopf solution is that some properties of the
solutions that seem natural in view of (1.1) turn out to be very difficult to prove
at the level of (1.3). For example, due to the additive nature of the driving noise
in (1.1), one would expect the difference between two solutions to exhibit better
spatial and temporal regularity properties than the solutions themselves. However,
such a statement turns into a statement about the regularity of the ratio between
solutions to (1.3), which seems very difficult to obtain, although some very recent
progress was obtained in this direction in [OW11].

As a corollary of the construction of SR however, we obtain extremely detailed
information about the solutions. In order to formulate our next result, we introduce
the stationary mean zero solution to the stochastic heat equation

∂tX = ∂2
xX + Π⊥0 ξ ,
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where Π⊥0 = 1 − Π0, with Π0 the orthogonal projection onto constant functions
in L2. (Adding this projection is necessary in order to have a stationary solution.)
Another vital role will be played by the process Φ given as the centred stationary
solution to

∂tΦ = ∂2
xΦ + ∂2

xX .

Note that, for any fixed time t, both Φ and X are equal in law to a Brownian
bridge (in space!) which is centred so that its spatial average vanishes, but there are
correlations between the two processes.

Remark 1.9 Both X and Φ are a priori given as stochastic processes defined
on the underlying probability space Ω. However, we will see below that X is
constructed in such a way that there are natural counterparts to X and Φ that are
continuous functions from X into C(R, C

1
2
−δ) for every δ > 0.

With this notation at hand, we have the following decomposition of the solutions:

Theorem 1.10 Let β > 0 be arbitrarily small and, for h0 ∈ Cβ and Ψ ∈ X , set
ht = SR(h0,Ψ)(t) and T? = inf{t > 0 : ht =∞}.

Then, for every t < T?, one has ht −Xt ∈ C1−β . Furthermore, there exists a
continuous map Q:X → C(R+, C−β) such that one has

e−2λΦt∂x(ht −Xt)−Qt ∈ C1−β , (1.11)

for every t < T?.

Proof. In view of the construction of Section 2, this is an immediate consequence
of Proposition 4.10, provided that we set

Qt = λe−2λΦt∂x(Xt + λXt + 4λ2Xt ) + 8λ4

∫ ·
0
e−2λΦt(z)∂xX (z) dΦt(z) .

See Section 2 for a definition of the expressions appearing here, as well as Section 3
for a definition of the “rough integral”

∫
. Actually, Proposition 4.10 provides an

expression with two additional terms involving a processX , but sinceXt ∈ C2−β

and Φt ∈ C
3
2
−β for every fixed t, one can check that the sum of these two terms

belongs to C1−β .

Remark 1.11 The product appearing on the left hand side of (1.11) makes sense
by Proposition A.9 since Φt ∈ C

1
2
−β and ∂x(ht −Xt) ∈ C−β for every β > 0.

Remark 1.12 Together with the explicit construction of Y given in Proposition 4.10
below, Theorem 1.10 provides a full description of the microscopic structure of
the solutions to the KPZ equation, all the way down to the “level C2−β” for every
β > 0.



INTRODUCTION 9

As a simple consequence of this decomposition, we also have a sharp regularity
result for the difference between two solutions with different initial conditions:

Corollary 1.13 Let ht and h̄t be two solutions to (1.1) with different Hölder con-
tinuous initial conditions, but driven by the same realisation of the noise. For every
β > 0, one then has ht − h̄t ∈ C

3
2
−β and

e−2λΦt∂x(ht − h̄t) ∈ C1−β , (1.12)

for every t less than the smaller of the two explosion times.

Proof. The bound (1.12) follows immediately from (1.11). The fact that ht − h̄t ∈
C

3
2
−β is then immediate since Ψt ∈ C

1
2
−β .

In a recent article [OW11], O’Connell and Warren provided a “multilayer
extension” of the solution to the stochastic heat equation (1.3). As a byproduct of
their theory, it follows that ht − h̄t ∈ C1 so that Theorem 1.10 can be seen as a
refinement of their results, even though the decomposition considered there is quite
different. One object that arises in [OW11] is the solution to the linearised KPZ
equation, namely

∂tu = ∂2
xu+ ∂xu ∂xh , (1.13)

where h is itself a solution to (1.1) (see equation (20) in [OW11]). One byproduct
of our construction is that we are able to provide a rigorous meaning to equations of
the type (1.13) or, more generally, equations of the type

∂tu = ∂2
xu+G(t, u, ∂xu) ∂xXt + F (t, u, ∂xu) ,

where F andG are suitable nonlinearities; see Theorem 4.8 below. In particular, this
theorem also allows to provide a rigorous meaning for the Fokker-Planck equation
associated to a one-dimensional diffusion in the time-dependent potential Xt , which
does not seem to be covered by existing techniques. Indeed, the well-posedness of
such a Fokker-Planck equation is quite well-known in the time independent case,
also with even weaker regularity assumptions, but the time-dependent case seems to
be new and highly non-trivial. See for example [FRW04, RT07] for some results in
the time-independent case, as well as [LBL08] for some previously known results
that are very general (the authors allow non-constant diffusion coefficients and
higher space dimensions for example), but do not appear to cover the situation at
hand.

To conclude this introductory section, let us mention a few more byproducts of
our construction that are of independent mathematical interest:

• We provide an example of a two-dimensional “geometric rough path” which
is obtained in a natural way by approximations by smooth paths but where,
in order to obtain a well-defined limit, a logarithmically divergent “area term”
needs to be subtracted, see Section 7 below.
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• Since the map SR is continuous, it does not depend on any choice of measure
on X . This allows us to use it for other type of convergence results, even
in the case of deterministic drivers. As an example, we show in Section 2.4
how to obtain a new periodic homogenisation result for the heat equation
with a very strong space-time periodic potential.
• It transpires that, besides the renormalisation Cε ≈ 1

ε observed in (1.5), two
further renormalisations, this time with logarithmically divergent constants,
are lurking underneath. The reason why this doesn’t seem to have been
observed before (and the reason why only Cε appears when performing the
Cole-Hopf transform of the multiplicative stochastic heat equation) is that
these two logarithmically diverging constants cancel each other exactly, see
Theorem 2.3 below. This appears to be due to a certain symmetry of the
equation (1.1) which may not hold in general for other equations in the same
class.

The remainder of this article is organised in the following way. In Section 2, we
provide a more detailed mathematical formulation of the main results of this article
and we explain the main ideas arising in the proof. In particular, we provide an
explicit description of all the objects appearing in Proposition 1.5. In Section 3, we
then introduce some the elements of the theory of (controlled) rough paths that are
essential to our proof. This section also contains some of the regularising bounds on
the heat kernel that we need in the sequel. This is followed in Section 4 by a solution
theory for a class of rough stochastic PDEs that includes the type of equation arising
when taking the difference between two solutions to (1.1).

In Section 5, we then build a “universal process” which provides a very good
approximation to the stationary solution to (1.1), lying in the fourth Wiener chaos
with respect to the driving noise ξ. This process is centred by construction (so it
really approximates the corresponding Burgers equation), so in Section 6 we also
construct its constant Fourier mode, in order to obtain an approximation to KPZ.
Finally, in Section 7 we provide a more detailed control of the local fluctuations of
one of the building blocks of the process built in Section 5.

1.1 Notation

We will often work with Fourier components. We adopt the usual convention
X(x) =

∑
k∈Z Xke

ikx, so that one has the identity (XY )k =
∑

`∈Z X`Yk−`. One
feature of this normalisation is that the average of a function X is equal to X0 and
the average of |X|2 is given by

∑
k∈Z |Xk|2.

Throughout this article, we will consistently make use of Hölder seminorms, so
that, for X:S1 → R and α ∈ (0, 1], we set

‖X‖α
def
= sup

x 6=y

|δX(x, y)|
|x− y|α

,

where δX(x, y) = X(y)−X(x). We will also extend this to negative values of α.
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For α ∈ (−1, 0), we set

‖X‖α
def
= sup

x 6=y

|
∫ y
x X(z) dz|
|x− y|1+α

,

and we denote by Cα the space of distributions obtained by closing C∞ under the
above norm. We make a slight abuse of notation for the supremum norm by also
writing

‖X‖∞
def
= sup

x
|X(x)| .

We are sometimes lead to consider Hölder norms instead of seminorms, so we set

‖X‖Cα
def
= ‖X‖α + ‖X‖∞ .

A crucial ingredient in the theory of (controlled) rough paths used in this article
is played by “area processes” and “remainder terms”, both of which are functions
of two spatial variables. For such functions, we also set

‖X‖α
def
= sup

x 6=y

|X(x, y)|
|x− y|α

, (1.14)

which is a kind of Hölder seminorm “on the diagonal” and we denote by Cα2
the closure of the space of smooth functions of two variables under the norm
‖X‖Cα2 = ‖X‖α + ‖X‖∞. The advantage of only ever considering the closures of
C∞ under the above norms has the advantage that all the spaces appearing in this
article are separable, so that no problem of measurability arises.
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2 Main results and ideas of proof

The idea pursued in this article is to solve (1.1) by performing a Wild expansion
[Wil51] of the solution in powers of λ but, instead of deriving an infinite series
that may be extremely difficult to sum, we truncate it at a fixed level (after exactly
4 terms to be precise) and then use completely different techniques to treat the
remainder. In order to appreciate how the techniques explained in this section can
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also apply to a concrete deterministic example, it may be helpful to simultaneously
follow the calculations in Section 2.4 below.

Recall that Xε is the stationary mean zero solution to the linearised equation

∂tXε = ∂2
xXε + Π⊥0 ξε .

Here, the noise process ξε is a mollified version of ξ, obtained by choosing a function
ϕ: R→ R+ that is even, smooth, compactly supported, decreasing on R+, and such
that ϕ(0) = 1, and then setting

ξε,k = ϕ(εk) ξk .

The ξk are the Fourier components of ξ, which are complex-valued white noises
with ξ−k = ξ̄k and Eξk(s)ξ`(t) = 2δk,−`δ(t − s). The above properties of the
mollifier ϕ will be assumed throughout the whole article without further mention.

A crucial ingredient of the construction performed in this article is a family Xτ
ε

of processes indexed by binary trees τ , where “•” denotes the “trivial” tree consisting
of only its root. The processXε associated to the trivial tree has already been defined,
and we define the remaining processes recursively as follows. Denoting by T2 the set
of all binary trees, any binary tree τ ∈ T2 with τ 6= • can be written as τ = [τ1, τ2],
i.e. τ consists of its root, with trees τ1, τ2 ∈ T2 attached. For any such tree τ , we
then define Xτ

ε as the stationary solution to

∂tX
τ
ε = ∂2

xX
τ
ε + Π⊥0 (∂xX

τ1
ε ∂xX

τ2
ε ) . (2.1)

Remark 2.1 As before, the reason why we introduce the projection Π⊥0 is so that
we can consider stationary solutions. Another possibility would have been to slightly
modify the equation to replace ∂2

x by ∂2
x − 1 for example, but it turns out that the

current choice leads to simpler expressions. Since we only have derivatives of Xτ
ε

appearing in (2.1) anyway, the effect of Π⊥0 turns out to be rather harmless, see
Remark 2.2.

We now add the constant terms back in. Set Yε (t) = Xε(t) +
√

2B(t), where B
is a standard Brownian motion. One of the main results of this article is that one
can then find constants Cτε for τ 6= • such that the solutions Y τ

ε to

∂tY
τ
ε = ∂2

xY
τ
ε + ∂xY

τ1
ε ∂xY

τ2
ε − Cτε , (2.2)

with initial condition Y τ
ε (0) = Xτ

ε (0), have a limit as ε→ 0 that is independent of
the choice of mollifier ϕ.

Remark 2.2 Since only derivatives of Y τ
ε appear on the right hand side of (2.2), it

follows that Xτ
ε = Π⊥0 Y

τ
ε . The reason for introducing the processes Xτ

ε is that it is
easier, as a first step, to show that they converge to a limit. The constant Fourier
mode will then be treated separately.
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The reason for the definition of the processes Y τ
ε is that, at least at a formal

level, if one defines a process hε(t) by

hε(t) =
∑
τ

λ|τ |Y τ
ε (t) , (2.3)

where |τ | denotes the number of inner nodes of τ (i.e. the number of nodes that are
not leaves, with | • | = 0 by convention), then hε solves the equation

∂thε = ∂2
xhε + λ(∂xhε)2 + ξε −

∑
τ

λ|τ |Cτε ,

which is precisely (1.5). The problem with such an approach is twofold: first,
we have no guarantee that the sum (2.3) actually converges. Then, even if it
did converge for fixed ε > 0, we would have no guarantee that the sequence of
processes hε constructed in this way converges to a limit, even if we knew that each
of the Y τ

ε converges. See however [Wil51, McK67, CCG00] for an analysis of the
corresponding expansion in the context of the Boltzmann equation, where the sum
over all binary trees can actually be shown to converge.

The strategy pursued in this work is to truncate the expansion (2.3) at a fixed
level and to then derive an equation for the remainder that can be solved by using
techniques inspired from [Hai11].

2.1 Convergence of the processes Y τ

In this section, we state the precise convergence result that we obtain for the
processes Y τ

ε . The choice for Cτε that we retain is Cτε = 0 for τ 6∈ { , , , , , },
and

Cε =
1

ε

∫
R
ϕ2(x) dx ,

Cε =
4π√

3
| log ε| − 8

∫
R+

∫
R

xϕ′(y)ϕ(y)ϕ2(y − x) log y
x2 − xy + y2

dx dy ,

Cε = −Cε
4

.

(2.4)

The remaining trees are of course all equivalent to the tree and therefore are
associated with the same constant. It is remarkable that Cε and Cε turn out to
exhibit the exact same logarithmic divergence but with opposite signs, save for
the factor 4 that takes into account the difference in multiplicities between the two
terms. It is also remarkable that, even though the constants Cε and Cε do depend
on the choice of mollifier ϕ, the resulting processes Y τ do not.

As a consequence of this choice, note also that we have the identity∑
τ

λ|τ |Cτε = λCε , (2.5)
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so that, at least formally, the process hε solves (1.5) for the “correct” constant Cε.
Before we state our convergence result, we introduce some more notation. For every
τ , we define an exponent ατ by

α =
1

2
, α = 1 ,

and then, recursively, by

α[τ1,τ2] = (ατ1 ∧ ατ2) + 1 .

(So we have for example α = 3
2 and α = 2.) For τ 6= •, we then define the

separable Fréchet space Xτ as the closure of smooth functions under the system of
seminorms

‖X‖τ,δ,T = sup
s,t∈[−T,T ]

(
‖X(t)‖Cατ−δ +

‖X(t)−X(s)‖∞
|t− s|

1
2
−δ

)
, (2.6)

where T ∈ [1,∞) and δ ∈ (0, 1
4 ). Similarly, we define X as the closure of smooth

functions under the system of seminorms

‖X‖ ,δ = sup
|t−s|∈(0,1]

( ‖X(t)−X(s)‖∞
|t− s|

1
4
−δ(1 + |t|)

+
‖X(t)‖

C
1
2−δ

1 + |t|

)
,

for δ ∈ (0, 1
4 ).

With these definitions, our precise convergence result for the processes Y τ
ε is

the following, which we will prove at the end of Section 7.

Theorem 2.3 Let Y τ
ε be as in (2.2) and let Xτ be as above. Then, for every binary

tree τ , there exists a process Y τ such that Y τ
ε → Y τ in probability in Xτ .

Remark 2.4 We believe that in the definition (2.6), we could actually have imposed
time regularity of order ατ/2 instead of 1/2.

2.2 Treatment of the remainder

The truncation of (2.3) that turns out to be the shortest “viable” one is as follows.
Setting T̄ = {•, , , , , , , , }, we look for solutions to (1.5) of the form

hε(t) =
∑
τ∈T̄

λ|τ |Y τ
ε (t) + uε(t)

def
= h?ε(t) + uε(t) , (2.7)

for a remainder uε. In the sequel, since the processes Y τ
ε mostly appear via their

spatial derivatives, we set
Ȳ τ
ε

def
= ∂xY

τ
ε , (2.8)

as a shorthand. With this notation, we have the following result for h?ε:
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Proposition 2.5 The process h?ε defined above is the stationary solution to

∂th
?
ε = ∂2

xh
?
ε + λ(∂xh

?
ε)

2 + ξε − λCε −R?ε ,

where the remainder termR?ε is given by

R?ε =
∑
τ,κ∈T̄

[τ,κ] 6∈T̄

λ|τ |+|κ|+1Ȳ τ
ε Ȳ

κ
ε .

Proof. It follows from the definition of Y τ
ε and from the fact that • ∈ T̄ that

∂th
?
ε = ∂2

xh
?
ε +

∑
τ∈T̄ \{•}
τ=[τ1,τ2]

λ|τ |Ȳ τ1
ε Ȳ τ2

ε + ξε −
∑
τ∈T̄

Cτε .

The claim now follows at once from the identity

λ(∂xh
?
ε)

2 =
∑
τ,κ∈T̄

λ|τ |+|κ|+1Ȳ τ
ε Ȳ

κ
ε ,

noting that |[τ, κ]| = |τ | + |κ| + 1 and that T̄ \ {•} ⊂ {[τ, κ] : τ, κ ∈ T̄ } by
inspection.

As a consequence of Proposition 2.5, if we want hε to satisfy (1.5), we should
take uε to be the solution to

∂tuε = ∂2
xuε + λ(∂xuε)2 + 2λ∂xuε ∂xh

?
ε +R?ε . (2.9)

Actually, it turns out to be advantageous to regroup the terms on the right hand side
of this equation in a slightly different way, by isolating those terms that contain an
occurrence of Yε . We thus write h?ε = Yε + h̄?ε , as well as

R?ε = 2λ4Ȳε (Ȳε + 4Ȳε ) + R̄?ε ,

with

R̄?ε = λ5(2 Ȳε Ȳε + 8 Ȳε Ȳε + Ȳε Ȳε ) + λ6(2 Ȳε Ȳε + 8 Ȳε Ȳε )

+ λ7(Ȳε Ȳε + 8 Ȳε Ȳε + 16 Ȳε Ȳε ) . (2.10)

The precise form of R̄?ε is actually irrelevant. The important fact is that one should
retain from this expression is that, by combining Theorem 2.3 with Proposition A.9,
there is a limiting process R̄? such that R̄?ε → R̄? in probability in C(R, C−β) for
every β > 0.

With these notations, (2.9) can be rewritten as

∂tuε = ∂2
xuε + 2λȲε (∂xuε + λ3Ȳε + 4λ3Ȳε )

+ λ(∂xuε)2 + 2λ∂xuε ∂xh̄
?
ε + R̄?ε . (2.11)
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Since, by Theorem 2.3, h̄?ε is continuous with values in C1−δ for every δ > 0, it
follows that if we are able to find a solution uε taking values in Cα for some α > 1
with a uniform bound as ε→ 0, there is no problem in making sense of the terms
on the second line of this equation in the limit ε→ 0.

The problem of course is the second term. Indeed, since Ȳ ∈ Cγ only for
γ < −1

2 , we would need uε(t) to converge in Cα for α > 3
2 for this term to make

sense in the limit (see Remark A.10 below). This however is hopeless since, by the
usual maximal regularity results, the action of the heat semigroup allows us to gain
only two spatial derivatives so that the best we can hope for is that uε(t) converges
in Cα precisely for every α < 3

2 only!
This is where the theory of rough paths comes into play. Denote by vε the

derivative of uε, so that (2.11) becomes

∂tvε = ∂2
xvε + 2λ∂x(Ȳε (vε + λ3Ȳε + 4λ3Ȳε )) + ∂xFε(vε, t) , (2.12)

where the nonlinearity Fε is given by

Fε = λv2
ε + 2λvε ∂xh̄

?
ε + R̄?ε .

As already mentioned, this nonlinearity is expected to be “nice”, in the sense that
we can use classical functional analysis to make sense of it as ε→ 0, so that we do
not consider it for the moment and will treat it as a perturbation later on.

If the right hand side of (2.12) were well-posed in the limit ε→ 0, we would
expect the solution vε to look at small scales like the solution Φε to

∂tΦε = ∂2
xΦε + ∂2

xYε , (2.13)

so we define Φε by

Φε,t =

∫ t

−∞
Pt−s ∂

2
xYε,s ds , (2.14)

where Pt is the heat semigroup. Since ∂2
xYε,s has zero average, this is well-defined

as long as Yε,s does not grow too fast for large times.
The idea now is to try to solve (2.12) in a space of functions that are “controlled

by Φ” in the sense that there exists a function v′ such that the “remainder term”

Rvε,t(x, y) = δvε,t(x, y)− v′ε,t(x) δΦε,t(x, y) , (2.15)

satisfies a bound of the type ‖Rvε,t‖α < ∞, uniformly as ε → 0, for some α > 1
2 .

Here, we have made use of the shorthand notation δv(x, y) = v(y) − v(x) and
similarly for δΦ. This notation will be used repeatedly in the sequel. What a bound
like (2.15) tells us is that, at very small scales, v looks like some multiple of Φ,
modulo a remainder term that behaves as if it was α-Hölder for some α > 1

2 . Note
that this is a purely local property of the increments.

This suggests that, if we were able to show “by hand” that Φε,t ∂xYε,t converges
to a limiting distribution as ε → 0, then one may be able to use this knowledge
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to give a meaning to the expression v ∂xY for those functions v admitting a
“derivative process” v′ such that the remainder Rvt (x, y) defined as in (2.15) satisfies
‖Rvt ‖α < ∞ for some α > 1

2 . This is precisely what the theory of controlled
rough paths [Gub04] allows us to do. For any fixed t, let Yt be the function of two
variables defined by

Yε,t(x, y) =

∫ y

x
δΦε,t(x, z) dYε,t(z) . (2.16)

It is important to note that, for every t and every ε, Yε,t satisfies the algebraic
relation

Yε,t(x, z)− Yε,t(x, y)− Yε,t(y, z) = δΦε,t(x, y) δYε,t(y, z) , (2.17)

for every x, y, z ∈ S1. One can then show, and this is the content of Proposi-
tion 7.13 below, that there exists a process Y with values in Cγ2 such that Yε → Y in
probability in C(R, Cγ2 ) for every γ < 1.

We refer to Section 3 below for more details, but the gist of the theory of
controlled rough paths is that one can use the process Y in order to define a “rough
integral”

∫ y
x At(z) dYt (z) as a convergent limit of compensated Riemann sums for

every smooth test function ϕ and for every function At such that, for some δ > 0,
there exists A′t ∈ Cδ and RAt ∈ C

1/2+δ
2 with

RAt (x, y) = δAt(x, y)−A′t(x) δΦt(x, y) . (2.18)

See Theorem 3.2 below for a precise formulation of this statement. It is important to
note at this stage that the notation

∫
used for the rough integral is really an abuse of

notation. Indeed, it does in general depend not just on A and Y , but also on a choice
of Y satisfying (2.17), as well as on the choice of A′ in (2.18). It is only when Y is
actually given by (2.16) that it coincides with the Riemann integral, independently
of the choice of A′. See equation 3.10 below for more details.

Remark 2.6 A number of recent results have made use of the theory of rough paths
to treat classes of stochastic PDEs, see for example [CF09, CFO11, GT10, Tei11].
In all of these cases, the theory of rough paths was used to deal with the lack of
temporal regularity of the equations. In this article, as in [Hai11, HW10], we use it
instead in order to deal with the lack of spatial regularity.

In this way, we can indeed make sense of the product vt ∂xYt as a distribution,
provided that vt admits a sufficiently regular decomposition as in (2.18) for some
“derivative process” v′t. In a way, this is reminiscent of the technique of “two-scale
convergence” developed in [Ngu89, All92]. The main differences are that it does
not require any periodicity at the small scale and that it does not rely on any explicit
small parameter ε, both of which make it particularly adapted to situations where
the small-scale fluctuations are random. See however Section 2.4 below for an
example with deterministic periodic data where the results of this article also apply.
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The same theory can also be used in order to make sense of the term Ȳt Ȳt in
(2.12). It is indeed possible to show that Ȳt is controlled by Ȳt in the sense that
the process Rt defined by

Rt (x, y) = δȲt (x, y)− Ȳt (x) δΦt(x, y) , (2.19)

takes values in C
1
2

+ζ

2 for some ζ > 0. Furthermore, the corresponding processes
for ε > 0 do converge to R in that topology, which turns out to be surprisingly
difficult to prove, see Theorem 7.4 below. In view of all of these convergence results,
the space X and the map Ψ: Ω→ X appearing in Theorem 1.1 and Proposition 1.5
are then defined as follows:

Definition 2.7 Setting T̄0 = {•, , , , }, the Fréchet spaceW is given by

W =
(⊕
τ∈T̄0

Xτ
)
⊕ C(R, C

3
4
2 )⊕ C(R, C

3
4
2 ) ,

and the map Ψ: Ω→W is given by the random variable

Ψ =
(⊕
τ∈T̄0

Y τ
)
⊕ Y⊕R . (2.20)

The space X ⊂ W is then defined as the algebraic variety determined by the
relations (2.17) and (2.19). Since X is closed (as a subset ofW) and Ψ is the limit
in probability of maps Ψε which map Ω into X , one automatically has Ψ(ω) ∈ X
for almost every ω.

We now have all the ingredients necessary to reformulate (2.12) as a fixed point
map by considering its mild formulation. We will then turn this into a fixed point
argument for (2.11), which is equivalent save for the constant Fourier mode. Using
the variation of constants formula, we can rewrite solutions to (2.12) for every fixed
realisation of {Y τ}τ∈T̄ and every fixed initial condition v0 as

vε = K0(vε) ,

where the map K0 is given by

(K0v)t = Ptv0 + 2λ∂x

∫ t

0
Pt−s

(
(vs + 4λ3Ȳε,s) Ȳε,s

)
ds

+ ∂x

∫ t

0
Pt−s(λ

4Ȳε,s Ȳε,s + Fε(vε, s)) ds ,

were Pt denotes the heat semigroup, the kernel of which we will denote by pt. For
any given smooth data {Y τ}τ∈T̄ , the map K0 is well-defined as a map from the set
of smooth functions v into itself. The problem with K0 is that it is not possible to
extend it to sufficiently large functional spaces by performing a classical completion
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procedure. The idea is therefore to first extend its definition to smooth input data
Ψ = ({Y τ}τ∈T̄ ,Y, R ) ∈ X , and to smooth triples V = (v, v′, Rv) such that the
additional algebraic relations (2.15) are satisfied, by setting

K(v0, V,Ψ)t = Ptv0 + 2λ

∫ t

0

∫
S1

p′t−s(· − y)(vs(y) + 4λ3Ȳs (y)) dYs (y) ds

+ ∂x

∫ t

0
Pt−s(λ

4Ȳs Ȳs + F (v,Ψ, s)) ds , (2.21)

where the “rough integral”
∫

is defined as in (3.4) below and where we set as before

F (v,Ψ, s) = λv2
s + 2λvs ∂xh̄

?(Ψ)s + R̄?(Ψ)s , (2.22)

with h? and R̄? given by (2.7) and (2.10) respectively. Actually, the precise defi-
nition of

∫
really does not matter at this stage. Indeed, if we denote by Xs ⊂ X

the set of smooth elements in X such that Y is given by (2.16) and R is given by
(2.19), then

∫
coincides with the usual Riemann integral and therefore K coincides

with K0 on Xs. Furthermore, by Proposition 3.3 below, Xs is dense in X and, as we
will see in Theorem 2.9 below, K is the unique continuous extension of K0 to X . In
this sense, we have not changed the classical notion of a smooth solution to (2.12)
at all, but have simply extended it to a larger class of input data.

Remark 2.8 If Y is defined differently from (2.16), even if it is smooth, we obtain
different solutions, see Section 2.3 below. While these different solutions may
appear “unphysical” at first sight, they actually have a clear interpretation in terms
of limiting points of solutions to the KPZ equation with highly oscillatory data, see
Section 2.4 for an explicit example.

For fixed κ > 0 (small enough as we will see shortly) and T > 0, denote now
by B?,T the closure of the space of smooth quadruples V = (m, v, v′, Rv), where
m is a real-valued function of time only, v and v′ are functions of time and space,
and Rv is a function of time and two spatial variables, under the norm

‖m, v, v′, Rv‖?,T = sup
t∈(0,T ]

t1−2κ(‖vt‖ 1
2
−κ + ‖v′t‖C3κ + ‖Rvt ‖ 1

2
+2κ + t

3κ−1
2 ‖vt‖∞)

+ sup
0<s<t≤T

s1−2κ

|t− s|2κ
‖vt − vs‖∞ + sup

t∈(0,T ]
|mt| .

Here, mt is interpreted as the spatial mean of ut, so that the natural projection map
π:B?,T → C([0, T ], C

3
2
−κ) recovering u from V is given by

(πV )t = Ivt +mt ,

where I is the integration operator given by the Fourier multiplier (1− δk,0)/(ik).
We furthermore denote by Y?,T the closed algebraic variety in X ⊕ B?,T de-

termined by the additional relation (2.15). Note that Y?,T is again a Polish space
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equipped with a natural metric given by the restriction of the product norm on
W ⊕B?,T . We now use K as a building block for the map M̂ appearing in Propo-
sition 1.5 in the following way. For any smooth element (h0,Ψ, V ) ∈ C∞ × Y?,T ,
and using furthermore the shorthand notation V = (m, v, v′, Rv), we set

M̂(h0,Ψ, V ) =
(
J (V,Ψ),K(∂x(h0 − h?0(Ψ)), V,Ψ),K′(V,Ψ), RM

)
,

where K is as in (2.21), K′ is given by

K′(V,Ψ) = 2λ(v + 4λ3Ȳ + λ3Ȳ ) , (2.23)

RM is defined by the relation (2.15), and

J (V,Ψ)t = Π0(h0 − h?0(Ψ)) +

∫ t

0
Π0F (v,Ψ, s) ds

+
λ

π

∫ t

0

∫
S1

(
vs(y) + 4λ3Ȳs (y) + λ3Ȳs (y)

)
dYs (y) ds .

(The latter expression is nothing but the constant mode of the right hand side of
(2.21) before that expression was differentiated.)

At this stage of our construction, it seems that the choice (2.23) for K′ is
somewhat arbitrary. Intuitively, it should be the right choice though, since this
is precisely the factor that appears in the second term of (2.12), so that one does
expect it to describe the amplitude of the small-scale fluctuations of the solution.
Mathematically, the fact that this is indeed the correct choice is seen by the fact
that this is the only choice guaranteeing that the image of M̂ lies again in B?,T ,
so that we can set up a fixed point argument. This is the content of the following
result which, together with the convergence results already mentioned earlier in this
section, forms the core of this article. The space BΨ,T appearing in the statement is
defined as in Proposition 1.5.

Theorem 2.9 For every κ < 1
12 , every T > 0, and every β > 2κ, the map M̂

extends uniquely to a locally uniformly continuous map from Cβ × Y?,T to B?,T .
Furthermore, for every Ψ ∈ X and every h0 ∈ Cβ , there exists T > 0 depending

only on the norms of Ψ and h0 such that the map V 7→ M̂(h0,Ψ, V ) is a strict
contraction in a sufficiently small ball of BΨ,T . Furthermore, the equation V =

M̂(h0,Ψ, V ) admits a unique solution in all of BΨ,T .

Proof. First, note that, since we definedRM such that (2.15) holds, we ensure that,
at least for smooth data, M̂(h0,Ψ, V ) ∈ BΨ,T for every (h0,Ψ, V ) ∈ Cβ × Y?,T .
The local uniform continuity of M̂ is the hard part of this result, and this is obtained
in Proposition 4.3 below.

The contraction properties and the existence of a unique fixed point for M̂
with its first two arguments fixed then follows from Theorem 4.8, noting that its
assumptions are satisfied for every Ψ by the definition of the space X in which the
input Ψ lies.
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At this point, it is legitimate to question whether such a complicated nonlinear
construction is really necessary, or whether one could instead find fixed Banach
spaces B̂T and X̂ such that M̂ extends to a continuous map X̂ × B̂T → B̂T and has
a fixed point for small enough time horizon T .

While it doesn’t seem easy to disprove such a statement at this level of generality,
the results in [Lyo91] strongly suggest that it is not possible to find any such spaces.
Indeed, the following is a straightforward extension of [Lyo91]:

Theorem 2.10 There exists no separable Banach space B supporting Wiener mea-
sure and such that the bilinear functional

I: (u, v) 7→
∫ 1

0
u(t) dv(t) ,

defined onH = H1([0, 1]), extends to a continuous function on B × B.

Proof. Note first that we can assume without loss of generality that B ⊂ C([0, 1])
since larger spaces make it only harder for I to be continuous. Also, by assump-
tion, B is the completion of H under some norm ‖ · ‖B. Assuming by contra-
diction that I is continuous on B × B, it follows from Fernique’s theorem that∫
I(u, v)µ(du, dv) < ∞, for every measure µ on B × B such that both of its

marginals are given by Wiener measure.
Let ΠN :B → H be the projection onto the first N Fourier modes which, since

B ⊂ C([0, 1]), is a bounded operator for every N . The construction in [Lyo91] then
yields a measure µ as above with the property that∫

I(ΠNu,ΠNv)µ(du, dv) ∼ logN , (2.24)

for N large. Since Fourier modes form an orthonormal basis ofH, it follows from
[Bog98, Thm 3.5.1] that (ΠNu,ΠNv)→ (u, v) µ-almost surely as N →∞. Since
weak convergence implies tightness in separable Banach spaces, we conclude from
Fernique’s theorem that

sup
N

∫
‖ΠNu‖B‖ΠNv‖B µ(du, dv) <∞ ,

which is a contradiction to (2.24).

Since, for any fixed t, both Yt and vt in (2.21) have regularity properties
identical to those of Brownian motion (actually, both Yt and Φt are nothing but
centred Brownian bridges), Theorem 2.10 leaves no doubt that the classical approach
to making sense of (2.12) in the limit ε→ 0 is doomed to failure.

We are now able to provide a proof of the results stated in the introduction:
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Proof of Proposition 1.5. The spaces B?,T , X and Y?,T as well as the maps M̂ and
h? =

∑
τ∈T̄ Y

τ were already defined, so that it suffices to verify that they satisfy
the required properties.

Given an initial condition h0 ∈ Cβ , we set v0 = ∂x(h0 − h?0), so that v0 ∈
Cβ−1. We know from Theorem 2.9 that one can choose T > 0 depending only
on ‖v0‖β−1 and ‖Ψ‖W such that the map M̂ is a contraction in its last argument
and we denote its fixed point by ŜTR (h0,Ψ) ∈ Y?,T . By performing the same
continuation procedure as in the proof of the existence of a unique maximal solution
for ordinary differential equations, we obtain an explosion time T?(h0,Ψ), which
is the supremum over all times T such that the fixed point problem in B?,T has a
solution. The fact that all Hölder norms of the solution explode as t → T? is an
immediate consequence of the fact that the local existence time can be controlled
in terms of the Hölder norm of the initial condition. Furthermore, these solutions
are all unique by the same argument as in the proof of Theorem 4.8 below, and they
agree on their common domains of definition.

The third property, namely the continuity of ŜTR in a neighbourhood of (h0,Ψ0)
whenever T < T?(h0,Ψ0) also follows in the same way as in the classical theory
of ODEs. This then immediately implies the lower semicontinuity of T?, since
its definition implies that one has T?(h,Ψ) > T for every (h,Ψ) in such a neigh-
bourhood. Finally, if we define Θt to be the canonical time-shift on X (which is a
continuous map for every t ∈ R), then the cocycle property follows immediately
from the elementary properties of the integral and the heat semigroup.

Proof of Theorem 1.1. We now define the map SR by setting

SR(h0,Ψ)t = h?(Ψ)t + (πŜR(h0,Ψ))t ,

for t < T?(h0,Ψ), and SR(h0,Ψ)t = ∞ for t > T?(h0,Ψ). Since one neces-
sarily has limt→T? ‖SR(h0,Ψ)t‖ 1

2
−β = +∞, the definition of the topology on

C̄
1
2
−β implies that the map SR constructed in this way does indeed take values in

C(R+, C̄
1
2
−β).

If we furthermore denote by STR the restriction of SR to the interval [0, T ], then it
follows from Proposition 1.5 that STR is continuous on the set {(h,Ψ) : T?(h,Ψ) >
T}. In particular, this is stronger than the claimed continuity property.

It remains to show that, for every fixed initial condition h0, one has SCH(h0, ω) =
SR(h0,Ψ(ω)) almost surely. Fix T > 0, and let ST (h0) = {Ψ ∈ X : T?(h0,Ψ) ≤
T}, which is the set of possible discontinuities of SR(h0, ·). By construction, for
every ε > 0, STR (h0,Ψε(ω)) almost surely agrees with the solution hε to (1.5) up
to time T . Since we know on the one hand that Ψε → Ψ in probability, and on the
other hand that hε converges in probability to SCH(h0, ω), the stated claim follows
if we can show that P(Ψ(ω) ∈ ST (h0)) = 0 for every T > 0 and every initial
condition h0 ∈ Cβ .

Assume by contradiction that there exists h0 and κ > 0 such that P(Ψ(ω) ∈
ST (h0)) ≥ κ. It follows from our construction that, for every Ψ0 ∈ ST (h0) and
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every K > 0, there exists a neighbourhood V of Ψ0 in X such that

sup
t≤T
‖SR(h0,Ψ)‖β ≥ K , ∀Ψ ∈ V .

Since Ψε → Ψ in probability, we conclude that there exists ε0 > 0 such that

P(sup
t≤T
‖ht,ε‖β ≥ K) ≥ κ

2
,

uniformly over all ε < ε0. This on the other hand is ruled out by the fact that
hε → h in probability in C([0, T ], Cβ).

To conclude this section, we give an explicit interpretation of the solution map
SR for arbitrary smooth data Ψ and we use the continuity of the solution map to
provide a novel homogenisation result.

2.3 Smooth solutions
It is instructive to see what is the meaning of SR(h0,Ψ) for general smooth data
Ψ = ({Y τ}τ∈T̄ ,Y, R ) ∈ X . Given such smooth data, we set

ξ(x, t) def
= ∂tYt (x)− ∂2

xYt (x) ,

as well as

Ht(x) =
∑

τ=[τ1,τ2]∈T̄

λ|τ |
(
∂tY

τ
t (x)− ∂2

xY
τ
t (x)− Ȳ τ1

t (x) Ȳ τ2
t (x)

)
, (2.25)

which is some kind of “defect” by which the Y τ may fail to satisfy their constituent
equations. Defining Φ as in (2.14) (but with Yε replaced by Y ), we also define G
to be the smooth function such that

Yt(x, y) =

∫ y

x
Φt(z) dYt (z) +

∫ y

x
Gt(z) dz .

Such a function always exists since Y satisfies (2.17) by definition of X and since
any two functions satisfying these relations always differ by an increment of a
function of one variable.

With this notation, we then have the following result:

Theorem 2.11 Let Ψ ∈ X be a smooth element, let h0 ∈ C∞, and let H , G and ξ
be as above. Then, T?(h0,Ψ) = +∞ and SR(h0,Ψ) is the unique global solution to

∂tht = ∂2
xht + λ(∂xht)

2 + 4λ2Gt ∂x(ht − Jt(Ψ)) +H + ξ , (2.26)

where Jt(Ψ) is the function given by

Jt(Ψ) = Yt + λYt − λ2Yt ,

with initial condition h0.
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Proof. By construction, we have

h = u+
∑
τ∈T̄

λ|τ |Y τ ,

where u solves the fixed point equation

u = (Ptu0)(x) + 2λ

∫ t

0

∫
S1

pt−s(x− y)(∂xus(y) + 4λ3Ȳs (y)) dYt (y) ds

+

∫ t

0
Pt−s(λ

4Ȳs (y) Ȳs (y) + F (u,Ψ, s)) ds , (2.27)

where u0 = h0 −
∑

τ∈T̄ λ
|τ |Y τ

0 and F is as in (2.22). It then follows from (3.10)

below and the fact that, by construction, ∂xus + 4λ3Ȳs is a rough path controlled
by Φ with derivative process 2λ(∂xus + 4λ3Ȳs + λ3Ȳs + 2λ2Ȳs ), that one has
the identity∫

S1

pt−s(x− y)(∂xus(y) + 4λ3Ȳs (y)) dYs (y)

=

∫
S1

pt−s(x− y)(∂xus(y) + 4λ3Ȳs (y)) ∂xYs (y) dy

+ 2λ

∫
S1

pt−s(x− y)(∂xus + 4λ3Ȳs + λ3Ȳs + 2λ2Ȳs )Gs(y) dy

=

∫
S1

pt−s(x− y)(∂xus(y) + 4λ3Ȳs (y)) ∂xYt (y) dy

+ 2λ

∫
S1

pt−s(x− y)∂x(hs − Js(Ψ))Gs(y) dy .

Similarly, it follows from (2.25) that

∑
τ∈T̄

λ|τ |Y τ
t =

∑
τ∈T̄

λ|τ |PtY
τ

0 +

∫ t

0
Pt−s

((∑
τ∈T̄

λ|τ |Y τ
s

)2
− R̄?(Ψ)s

)
ds

+

∫ t

0
Pt−sHs ds .

We can now “undo” the construction and recover a fixed point equation for h. Since
the fixed point map for u was built precisely in such a way that h solves the KPZ
equation, provided that the Y τ solve their constituent equations and that the rough
integral is replaced by a usual Riemann integral, we recover the KPZ equation,
except for the two correction terms involving H and G, thus yielding (2.26).

2.4 A new homogenisation result
To conclude this section, we present a new periodic homogenisation result for the
heat equation with a strong time-varying potential, which illustrates the power of the
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techniques presented in this article. This equation has been studied extensively re-
cently and several homogenisation results have been obtained for both the stochastic
and the deterministic case [Bal10, Bal11, PP12], see also the monograph [CM94].

In this section, we show how to obtain a periodic homogenisation result in the
situation where, in (1.1), the driving noise ξ is replaced by a space-time periodic
function that is rescaled with the same exponents as space-time white noise. More
precisely, we fix a periodic function ϕ:S1 → R with

∫
ϕ(x) dx = 0 and we

consider the equation

∂th
(n) = ∂2

xh
(n) + (∂xh(n))2 + n3/2ϕ(nx+ cn2t)− Cn , (2.28)

for n large, where Cn a sequence of constants to be determined so that the solutions
to (2.28) converge to a non-trivial limit. Of course, as in (1.3), this is equivalent to
solving the heat equation with the potential n3/2ϕ(nx+ cn2t).

Similarly to what we did before, we write Cn =
∑

τ∈T̄ C
τ
n and we define Y τ

n

as the stationary (modulo constant Fourier mode) solutions to

∂tY
τ
n = ∂2

xY
τ
n + ∂xY

τ1
n ∂xY

τ2
n − Cτn , (2.29)

where we want to specify the constants Cτn in such a way that the resulting expres-
sions all converge to finite limits. It turns out to be straightforward to solve these
equations in the following way. Set γ = 1

2 and then define recursively a family of
exponents γτ by

γ[τ1,τ2] = γτ1 + γτ2 .

With this notation, we then make the ansatz

Y τ
n (t, x) = n−γτϕτ (nx+ cn2t) + n2−γτKτ t− Cτn t , (2.30)

for some periodic centred functions ϕτ and constantsKτ . We furthermore introduce
the operator G = (c − ∂x)−1, where c is as in (2.28). With this ansatz, we then
immediately obtain the identity

ϕ = G∂xϕ .

Further inserting (2.30) into (2.29), we obtain for the remaining functions ϕτ and
constants Kτ the recursion relations

∂xϕ
[τ1,τ2] = GΠ⊥0 (∂xϕ

τ1 ∂xϕ
τ1) , K[τ1,τ2] = Π0(∂xϕ

τ1 ∂xϕ
τ1) .

It is now very easy to apply the results exposed in this section to obtain the following
homogenisation result:

Theorem 2.12 With the same notations as above, setCn = nK +2n1/2K . Then,
for every Hölder continuous initial condition h0, the solution to (2.28) converges
locally uniformly as n→∞ to the solution h to

∂th = ∂2
xh+ (∂xh)2 + 4K̄∂xh+K + 4K ,

where the constant K̄ is given by K̄ = Π0(∂xϕ G∂xϕ ). If furthermore ϕ is
non-constant, then K̄ 6= 0 if and only if c 6= 0.
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Proof. The claim follows immediately from Theorem 2.11, as well as the continuity
of SR established in Proposition 1.5, provided that we can show that

({Y τ
n }τ∈T̄ ,Yn, Rn )→ ({Y τ}τ∈T̄ ,Y, R ) ,

in X , where Y = Y = Y = 0, Y = K , Y = K , Yt(x, y) = K̄(y − x),
and R = 0. By choosing Cn = nK and Cn = n1/2K , the convergence of the
processes Y τ to the correct constants follows immediately from (2.30). Note that
the scaling is precisely such that the convergence does indeed take place in Xτ for
each of the Y τ

n , but it would not take place in any stronger Hölder-type norm. The
reason why K appears with a prefactor 2 in the statement of the theorem is that
there are two trees isometric to in T .

It remains to consider Yn and Rn , which are both related to the process Φn

given as in (2.14). A straightforward calculation shows that

Φn(t) = n−1/2ϕ̄(nx+ cn2t) , ϕ̄ = G∂xϕ .

Let now ψ = ϕ̄ ∂xϕ so that, at time t = 0, one has

Yn(x, y) =

∫ y

x
ψ(nz) dz − ϕ̄(nx)

n
(ϕ (ny)− ϕ (nx))

= K̄(y − x) +O(|y − x| ∧ n−1) .

Since the situation at time t 6= 0 is the same, modulo a spatial translation, it shows
that Yn does indeed converge to Y in C(R, C3/4

2 ). A similar calculation shows that
Rn(x, y) = O(|y − x| ∧ n−1), so that it does indeed converge to 0 in the same
space.

For the last statement, an explicit calculation yields the identity

K̄ =
∑
k∈Z

ck2

(c2 + k2)2
|ϕk|2 ,

from which the claim follows at once.

3 Elements of rough path theory

In this section, we give a very short introduction to some of the elements of rough
path theory needed for this work. For more details, see the original article [Lyo98]
and the monographs [LQ02, LCL07, FV10b] or, for a simplified exposition covering
most of the notions required for this work, see [Hai11]. We will mostly make use
of the notations and terminology introduced by Gubinelli in [Gub04] since the
estimates given in that work seem to be the ones that are most suitable for the
present undertaking.
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We denote by C2(S1,Rn) the space of continuous functions from R2 into Rn

that vanish on the diagonal and such that, for f ∈ C2(S1,Rn), there exists c ∈ Rn

such that the relations

f (x+ 2π, y + 2π) = f (x, y) , f (x, y + 2π) = f (x, y) + c ,

hold for every x, y ∈ Rn. We will often make an abuse of notation and write
f (x, y) for x, y ∈ S1. Our convention in this case is that we take for x the unique
representative in [0, 2π) for y the unique representative in [x, x+ 2π). The same
convention is enforced whenever we write

∫ y
x for x, y ∈ S1.

Usually, we will omit the base space S1 and the target space Rn in our notations
for the sake of simplicity. We also define a difference operator δ: C → C2 by

δX(x, y) = X(y)−X(x) .

A rough path on S1 then consists of two parts: a continuous function X ∈
C(S1,Rn), as well as a continuous “area process” X ∈ C2(S1,Rn×n) such that the
algebraic relations

Xij(x, z)− Xij(x, y)− Xij(y, z) = δXi(x, y)δXj(y, z) , (3.1)

hold for every triple of points (x, y, z) and every pair of indices (i, j). One should
think of X as postulating the value of the quantity∫ y

x
δXi(x, z) dXj(z) def

= Xij(x, y) , (3.2)

where we take the right hand side as a definition for the left hand side. (And not the
other way around!) The aim of imposing (3.1) is to ensure that (3.2) does indeed
behave like an integral when considering it over two adjacent intervals.

Remark 3.1 We see from (3.2) why X can not in general be a continuous function
on S1×S1, since there is no a priori reason to impose that

∫
S1 δX

i(x, z) dXj(z) =
0.

Another important notion taken from [Gub04] is that of a path Y controlled by
a rough path X . Given a rough path X , we say that a pair of functions (Y, Y ′) is a
rough path controlled by X if the “remainder term” R given by

R(x, y) def
= δY (x, y)− Y ′(x) δX(x, y) , (3.3)

has better regularity properties than Y . Typically, we will assume that ‖Y ‖α <∞
and ‖Y ′‖α <∞ for some Hölder exponent α, but that ‖R‖β <∞ for some β > α.
Here, Rs,t ∈ Rm and the second term is a matrix-vector multiplication.

Note that, a priori, there could be many distinct “derivative processes” Y ′

associated to a given path Y . However, if X is a typical sample path of Brownian
motion and if we impose the bound ‖R‖β <∞ for some β > 1

2 , then it was shown
in [HP11] that there can be at most one derivative process Y ′ associated to every Y .
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3.1 Integration of controlled rough paths.
It turns out that if (X,X) is a rough path taking values in Rn and Y is a path
controlled by X that also takes values in Rn, then one can give a natural meaning
to the expression

∫
〈Yt, dXt〉, provided that X and Y are sufficiently regular. The

approximation Yt ≈ Ys + Y ′s δXs,t suggested by (3.3) shows that it is reasonable to
define the integral as the following limit of “second-order Riemann sums”:∫

〈Y (x), dX(x)〉 = lim
|P|→0

∑
[x,y]∈P

(〈Y (x), δX(x, y)〉+ trY ′(x) X(x, y)) , (3.4)

where P denotes a partition of the integration interval, and |P| is the length of its
longest element.

With these notations at hand, we quote the following result, which is a slight
reformulation of [Gub04, Prop 1]:

Theorem 3.2 Let (X,X) satisfy (3.1) and let (Y, Y ′) be a rough path controlled by
X with a remainder R given by (3.3). Assume furthermore that

‖X‖α + ‖X‖β + ‖Y ′‖ᾱ + ‖R‖β̄ <∞ , (3.5)

for some exponents α, ᾱ, β, β̄ > 0. Then, provided that α+ β̄ > 1 and ᾱ+ β > 1,
the compensated Riemann sum in (3.4) converges. Furthermore, one has the bound∣∣∣ ∫ y

x
〈δY (x, z), dX(z)〉− trY ′(x) X(x, y)

∣∣∣ . |y−x|γ(‖X‖α‖R‖β̄ + ‖X‖β‖Y ′‖ᾱ)

(3.6)
with γ = (α+ β̄) ∧ (ᾱ+ β), for some proportionality constant depending only on
the dimensions of the quantities involved and the values of the exponents.

Actually, one has an even stronger statement. Let Cα,β = Cα ⊕ Cβ2 be the space
of integrators (X,X) and let Y be the closed subset of Cα,β ⊕ Cᾱ,β̄ (with elements
of Y written as (X,X, Y ′, R)) defined by the algebraic relations (3.1) and (3.3),
where (3.3) is interpreted as stating that there exists a function of one variable Y
such that (3.3) holds for all pairs (x, y). Let furthermore Yg ⊂ Y be the set defined
by the additional constraint

Xij(x, y) + Xji(x, y) = δXi(x, y) δXj(x, y) . (3.7)

(Note that this constraint is automatically satisfied if X is given by the left hand side
of (3.2) for some smooth X .) Then, one has:

Proposition 3.3 The set Yg is dense in Y . Furthermore, provided that ᾱ ≤ α,
β̄ ≤ β, and (α+ β̄) ∧ (ᾱ+ β) > 1, the map

I: (X,X, Y, Y ′) 7→
(
X,X,

∫ ·
0
〈δY (0, z), dX(z)〉, δY (0, ·)

)
, (3.8)
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defined on smooth elements of Yg, extends uniquely to the continuous map Î:Yg →
Yg obtained by replacing the Riemann integral by

∫
in the above expression.

Furthermore, Î is uniformly Lipschitz continuous on bounded sets of Yg under
the natural norm

‖X,X, Y ′, RY ‖ = ‖Y ′‖ᾱ + ‖RY ‖β̄ + ‖X‖α + ‖X‖β ,

and it is given by replacing
∫

by
∫

in (3.8).

Proof. The density of Yg in Y was shown for example in [FV06]. For the uniform
Lipschitz continuity of Î on bounded sets, it suffices to retrace the proof of [Gub04,
Theorem 1]. Since Yg is dense in Y , the uniqueness of the extension follows.

Note that this is not a corollary of Theorem 3.2. Indeed, the bound (3.6) only
holds on the nonlinear space Y so that it is not possible to simply exploit the
bilinearity of the integral, even though the bound obtained in [Gub04] shows that it
behaves “as if” the bound (3.6) was valid on all of Cα,β ⊕ Cᾱ,β̄ .

Remark 3.4 We made a slight abuse of notation in (3.8) in order to improve the
legibility of the expressions, by identifying on both sides of the equation elements
(X,X, Y ′, R) with the corresponding element (X,X, Y, Y ′), where Y is the (unique
up to constants) function such that (3.3) holds. We also slightly jumbled the
dimensions of the spaces (if X is n-dimensional then Y should also be so, but the
integral is only one-dimensional), but the meaning should be obvious.

Remark 3.5 The bound (3.6) does behave in a very natural way under dilatations.
Indeed, the integral is invariant under the transformation

(Y,X,X) 7→ (λ−1Y, λX, λ2X) . (3.9)

The same is true for right hand side of (3.6), since under this dilatation, we also
have (Y ′, R) 7→ (λ−2Y ′, λ−1R).

Remark 3.6 It is straightforward to check that, if (Y, Y ′) is a rough path controlled
by X , then so is (fY, fY ′), for any smooth function f . As a consequence, if (X,X)
and (Y, Y ′) satisfy the bounds (3.5), then Theorem 3.2 allows to make sense of the
product Y (x)dXdx as a distribution, even in situations when α < 1

2 , where such a
product would not be well-defined in the classical sense.

Remark 3.7 One could argue that it would have been natural to impose the condi-
tion (3.7) from the beginning. The reasons for not doing so are that the integral

∫
is

well-defined without it and that non-geometric situations can arise naturally in the
context of numerical approximations, see for example [HM10, HMW12].

It is clear from the definition (3.4) that if X is smooth and X is given by (3.2)
(reading the definition from right to left), then

∫
coincides with the usual Riemann
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integral. It is therefore instructive to see what happens if X is a smooth function
but one sets

Xij(x, y) =

∫ y

x
δXi(x, z) dXj(z) +

∫ y

x
F ij(z) dz ,

for some continuous function F . It is then clear that (3.1) is still satisfied and that
‖X‖β <∞ provided that β ≤ 1. Even the additional “geometric” constraint (3.7)
is satisfied if F is antisymmetric. Given a smooth function Y , we can then choose
for Y ′ an arbitrary smooth function and the remainder term R given by (3.3) will
still satisfy ‖R‖β̄ <∞ for β̄ ≤ 1. It is now straightforward to verify that the rough
integral is well-posed and equals∫ y

x
〈Y (z) dX(z)〉 =

∫ y

x

〈
Y (z),

dX

dz
(z)
〉
dz +

∫ y

x
trY ′(z)F (z) dz , (3.10)

where the right hand side is a usual Riemann integral. See for example the original
article [Lyo98, Example 1.1.1] for a more detailed explanation on how to interpret
this apparent discrepancy.

3.2 Heat kernel bounds
In this section, we obtain a number of sharp bounds on the interplay between the
heat kernel on S1 and rough path valued functions. The reader who is interested
in getting quickly to the heart of the matter can easily skip the proofs of these
results, since they are not particularly formative and mostly consist of relatively
straightforward estimates. However, Proposition 3.8 is one of the most important
ingredients of the next section, so we prefer not to relegate these bounds to a
mere appendix. Several of these bounds are close in spirit to those obtained in
[HW10, Hai11], but both the norms employed here and the precise form of the
bounds required for our arguments are quite different.

The following quantity will be very often used in the sequel, so we give it a
name. Given a path Y controlled by a rough path (X,X) and given κ > 0, we define
the quantity

K κ(Y,X) def
= ‖Y ‖ 1

2
−κ‖X‖ 1

2
−κ + ‖X‖1−2κ‖Y ′‖C3κ + ‖RY ‖ 1

2
+2κ‖X‖ 1

2
−κ .

We also define, for C1 functions f : R→ R, the norm

|||f ||| :=
∑
n∈Z

√
1 + |n| sup

0≤t≤1
(|f (n+ t)|+ |f ′(n+ t)|) <∞ . (3.11)

We then have the following bound, which can be viewed as a refinement of
[Hai11, Prop. 2.5]:

Proposition 3.8 Let f ∈ C1(R,R) be such that |||f ||| < ∞, let λ ≥ 1, and let
κ ∈ (0, 1

2 ). Then, the bound∣∣∣ ∫
S1

f (λx)Y (x) dX(x)
∣∣∣ . λκ−

1
2 |Y (0)|‖X‖ 1

2
−κ + λ2κ−1K κ(Y,X) ,
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holds uniformly for all λ > 1, with a proportionality constant depending only on
|||f |||.

Remark 3.9 One very important feature of this bound is that the first term on the
right hand side only depends on |Y (0)| and not on ‖Y ‖∞ as in [Hai11]. This is
achieved thanks to the control provided by the norm ||| · |||, which ensures that f
decays sufficiently fast at infinity. One place where this plays a crucial role is the
proof of Corollary 3.13 below.

Proof. We use the same technique of proof as in [Hai11, Prop. 2.5], but we are
more careful with our bounds and exploit the knowledge from (3.11) that f decays
relatively fast at infinity. To shorten our notations, we set Yf (x) = f (λx)Y (x) and
Y ′f (x) = f (λx)Y ′(x), and we also set

ak = sup
0≤t≤1

(|f (k + t)|+ |f ′(k + t)|) .

Setting N = b2πλc, δx = 2π/N and writing xk = k δx, we have∣∣∣ ∫
S1

f (λx)Y (x) dX(x)
∣∣∣ ≤ N−1∑

k=0

∣∣∣ ∫ xk+1

xk

Yf (x) dX(x)
∣∣∣ def

=
N−1∑
k=0

Tk .

Note furthermore that, for x ∈ [xk, xk+1], one has λx ∈ [k, k+ 2] so that, for every
α ∈ (0, 1], one has the bounds

‖Yf‖α,k . (ak + ak+1)(‖Y ‖α + λα‖Y ‖∞) , (3.12a)

‖Y ′f‖α,k . (ak + ak+1)(‖Y ′‖α + λα‖Y ′‖∞) , (3.12b)

‖RYf ‖α,k . (ak + ak+1)(‖RY ‖α + λα‖Y ‖∞) , (3.12c)

where we denoted by ‖ · ‖α,k the corresponding Hölder seminorm restricted to the
interval [xk, xk+1].

It then follows from Theorem 3.2 that

Tk = f (λxk)Y (xk) δXk + f (λxk)Y ′(xk) Xk +Rk , (3.13)

where the remainder term Rk is bounded by

|Rk| . λ−κ−1(‖Y ′f‖3κ,k‖X‖1−2κ + ‖RYf ‖ 1
2

+2κ,k‖X‖ 1
2
−κ) . (3.14)

At this point, we note that the supremum norm of Y over the interval [xk, xk+1] is
bounded by

‖Y ‖∞,k . |Y (0)|+ ‖Y ‖αλ−α(1 + |k|)α , (3.15)

for any α ∈ (0, 1]. Using this identity with α = 1
2−κ and the fact that (1+|k|)1/2ak

is summable by assumption, we can combine (3.14) with (3.12), so that

N−1∑
k=0

|Rk| . λκ−
1
2 |Y (0)| ‖X‖ 1

2
−κ + λ2κ−1(‖Y ′‖∞‖X‖1−2κ + ‖Y ‖ 1

2
−κ‖X‖ 1

2
−κ)
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+ λ−κ−1(‖X‖1−2κ‖Y ′‖3κ + ‖RY ‖ 1
2

+2κ‖X‖ 1
2
−κ) ,

which is actually slightly better than the desired bound. In order to conclude, it
remains to bound the other two terms appearing in the right hand side of (3.13). To
do so, we use again (3.15) to obtain

|f (λxk)Y (xk) δXk + f (λxk)Y ′(xk) Xk| . (ak + ak+1)λκ−
1
2 |Y (0)| ‖X‖ 1

2
−κ

+ (ak + ak+1)λ2κ−1(|k|
1
2
−κ‖Y ‖ 1

2
−κ‖X‖ 1

2
−κ + ‖Y ′‖∞‖X‖1−2κ) ,

and the claim follows at once.

Remark 3.10 We think of κ as being a small parameter. As a consequence, this
bound is especially strong in the case Y (0) = 0 (or small), which will play a crucial
role in the sequel.

Corollary 3.11 Let pt denote the heat kernel on S1 and let p(k)
t be its kth (spatial)

derivative. Then, the bound∣∣∣∫
S1

p(k)
t (x− y) dX(y)

∣∣∣ . t−
1
4
− k+κ

2 ‖X‖ 1
2
−κ ,

holds uniformly over all x.

Proof. Setting Y (x) = 1, this is an immediate consequence of Proposition 3.8,
using the fact that there exist functions ft such that, for every k ≥ 0, |||f (k)

t ||| is
uniformly bounded for t ∈ (0, 1], and such that

p(k)
t (x) = t−

1+k
2 fkt (t−1/2x) .

The claim then follows by setting λ = t−1/2.

Corollary 3.12 Let pt denote the heat kernel on S1 and let p(k)
t be its kth (spatial)

derivative. Then, the bound∣∣∣ ∫
S1

p(k)
t (z − y)Y (y) dX(y)

∣∣∣ . t−
1
4
− k+κ

2 |Y (z)|‖X‖ 1
2
−κ + t−

k
2
−κK κ(Y,X) ,

holds uniformly over all z.

Proof. This follows from Proposition 3.8 and the scaling properties of the heat
kernel in the same way as Corollary 3.11. It furthermore suffices to translate the
origin to y = z.

Corollary 3.13 Let pt denote the heat kernel on S1 and let p(k)
t be its kth (spatial)

derivative. Then, the bound∣∣∣ ∫
S1

p(k)
t (z − y)(Y (y)− Y (x)) dX(y)

∣∣∣ . t−
1
4
− k+κ

2 |z − x|
1
2
−κ‖Y ‖ 1

2
−κ‖X‖ 1

2
−κ

+ t−
k
2
−κK κ(Y,X) ,

holds uniformly over all x and z.
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Proof. This is a particular case of Corollary 3.12, using the fact that |Y (z)−Y (x)| ≤
|z − x|

1
2
−κ‖Y ‖κ− 1

2
.

Actually, a similar bound also holds if we replace p(k)
t by a kind of “fractional

derivative” as follows:

Proposition 3.14 Let pt denote the heat kernel on S1, let p(k)
t be its kth (spatial)

derivative, let κ ∈ (0, 1
2 ), and let α ∈ [1

2 − κ, 1]. Then, the bound∣∣∣ ∫
S1

p(k)
t (z − y)− p(k)

t (z′ − y)
|z − z′|α

(Y (y)− Y (x)) dX(y)
∣∣∣

. t−κ−
k+α

2 ‖Y ‖ 1
2
−κ‖X‖ 1

2
−κ + t−κ−

k+α
2 K κ(Y,X) , (3.16)

holds uniformly over all z, z′ and x, such that |x − z| ∨ |x − z′| ≤ |z − z′|, and
over all t ≤ 1.

Proof. Denote the first term on the right hand side of (3.16) by T1 and the second
term by T2. As a shorthand, we also write

I def
=

∫
S1

(p(k)
t (z − y)− p(k)

t (z′ − y))(Y (y)− Y (x)) dX(y) ,

so that we aim to show that

|I| . |z − z′|α(T1 + T2) . (3.17)

With these notations, it follows immediately from Corollary 3.13 that

|I| . t
α+κ

2
− 1

4 |z − z′|
1
2
−κT1 + t

α
2 T2 . (3.18)

This shows that (3.17) holds on the set {|t| ≤ |z − z′|2}. On the other hand, we can
write

I =

∫ z′

z

∫
S1

p(k+1)
t (z′′ − y)(Y (y)− Y (x)) dX(y) dz′′

Applying again Corollary 3.13 (this time with k + 1 instead of k) for the integrand
and integrating over z′′, we conclude that the bound

|I| . t
α+κ−1

2
− 1

4 |z − z′|
3
2
−κT1 + t

α−1
2 |z − z′|T2 , (3.19)

holds. This in turn shows that (3.17) holds on the set {|t| ≥ |z − z′|2}, so that the
proof is complete.

Corollary 3.15 Let p(k)
t be as above, let κ ∈ (0, 1

2 ), and let α ∈ [1
2 − κ, 1]. Then,

the bound∣∣∣ ∫
S1

p(k)
t (z − y)− p(k)

t (z′ − y)
|z − z′|α

Y (y) dX(y)
∣∣∣

. t−
1
4
− k+α+κ

2 ‖Y ‖∞‖X‖ 1
2
−κ + t−κ−

k+α
2 K κ(Y,X) ,

holds uniformly over all z, z′, and over all t ≤ 1.
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Proof. The proof is the same as that of Proposition 3.14, but using Corollary 3.12
instead of Corollary 3.13.

Combining both results, we also obtain

Corollary 3.16 Let p(k)
t be as above, let κ, δ ∈ (0, 1

2 ), and let α ∈ [1
2 − κ, 1]. Then,

the bound∣∣∣ ∫
S1

p(k)
t (z − y)− p(k)

t (z′ − y)
|z − z′|α

Y (y) dX(y)
∣∣∣ . t−κ−

k+α
2 ‖Y ‖ 1

2
−κ‖X‖ 1

2
−κ

+ t−κ−
k+α

2 K κ(Y,X) + t−
1
4
− k+α+δ

2 ‖Y ‖∞‖X‖ 1
2
−δ ,

holds uniformly over all z, z′, and over all t ≤ 1.

Proof. It suffices to write Y (y) as (Y (y)− Y (x)) + Y (x) for x between z and z′.
One then applies Proposition 3.14 to the first term and Corollary 3.15 to the second
term.

4 Fixed point argument

With these bounds at hand, we can now set up the spaces for our fixed point argument.
Our aim is to provide a rigorous meaning for local solutions to equations of the type

∂tvt = ∂2
xvt + ∂x(G(vt, t) ∂xYt) + ∂xF (vt, t) , (4.1)

where Y is a fixed process taking values in C
1
2
−κ̄ for some κ̄ > 0, and F and G are

sufficiently “nice” nonlinearities. The precise conditions on F and G will be spelled
out in Section 4.3 below. For the moment, a typical example to keep in mind is

G(vt, t) = vt + wt , F (vt, t) = v2
t + w̄t , (4.2)

for some fixed processes w and w̄.
In full generality, such an equation simply does not make sense in the regularity

class that we are interested in. However, it turns out that it is well-posed if we are
able to find a sufficiently regular “cross-area” Y between Y and Φ, where Φ is given
by the centred stationary solution to

∂tΦt = ∂2
xΦt + ∂2

xYt , (4.3)

and if, in the example (4.2), we assume that for every fixed t > 0, wt is controlled
by (Φt, Yt). Indeed, if this is the case, then we can “guess” that the solution v to
(4.1) will locally “look like” Φ, so that we will search for solutions belonging to a
space of paths controlled by Φ.
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4.1 Preliminary computations
In this subsection, we consider the following setting. We assume that we are given
processes Y and Z taking values in C

1
2
−κ̄ for some κ̄ > 0, and we define a process

Φ by setting

Φt = PtΦ0 +

∫ t

0
∂2
xPt−s Ys ds .

We also assume that we are given a process Y such that, for every t > 0 and every
x, y, z ∈ S1,

Yt(x, y) + Yt(y, z)− Yt(x, z) = δYt(x, y) δZt(y, z) , (4.4)

and such that supt≤1 ‖Yt‖1−2κ̄ <∞. This allows to construct a rough path-valued
process Ŷ with components Ŷt = (Yt, Zt), and with the antisymmetric part of its
area process given by Y. (Its symmetric part is canonically given by half of the
increment squared, as in (3.7).) In the sequel, we will mostly use the case where
Zt = Φt for Φ given by (4.3), but this is not essential, and it will be useful in
Section 7 below to have the freedom to consider different choices of Z and Y.

We assume that, for almost every t > 0, vt is controlled by Zt. With this
notation fixed, we can then define a mapM by

(Mv)t(x) =

∫ t

0

∫
S1

p′t−s(x− y) vs(y) dYs(y) ds .

Here, the inner integral is to be interpreted in the sense of Theorem 3.2. The map
M will be our main building block for providing a rigorous way of interpreting
(4.1) in a “mild formulation”. However, it is important to remember that, as already
noted in [Hai11], the notion of solution obtained in this way does depend on the
choice of Y, which is not unique.

Our aim is to show that, provided that Ŷ and v are regular enough, (Mv)t is
controlled by Φt. In the light of Corollary 3.13 and Proposition 3.14, we set as a
shorthand

K κ
s

def
= K κ(vs, Ŷs) ,

and we define RMt to be the “remainder term” given by

RMt (x, y) def
= (Mv)t(y)− (Mv)t(x)− vt(x)(Φt(y)− Φt(x)) .

With these notations at hand, we obtain the following bound as a straightforward
corollary of the previous section:

Proposition 4.1 For every κ ∈ (0, 1
4 ) and every κ̄ ∈ (0, 1

2 ), the bound

‖RMt ‖ 1
2

+2κ . t−
3κ
2 ‖vt‖∞‖Φ0‖ 1

2
−κ +

∫ t

0
(t− s)−1−κ− κ̄

2 ‖Ys‖ 1
2
−κ̄ ‖vs − vt‖∞ ds

+

∫ t

0

(
(t− s)−

3
4
−κ−κ̄‖vs‖ 1

2
−κ̄‖Ys‖ 1

2
−κ̄ + (t− s)−

3
4
−κ−κ̄K κ̄

s

)
ds ,

holds uniformly over t ∈ (0, T ] for every T > 0.
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Proof. We have the identity

RMt (x, y) =

∫ t

0

∫
S1

(p′t−s(y − z)− p′t−s(x− z))(vs(z)− vt(x)) dYs(z) ds

+ vt(x)(PtΦ0(y)− PtΦ0(x)) ,

where Pt denotes the heat semigroup. Here, we have made use of the fact that Y
solves (4.3). We can rewrite this as

RMt (x, y) = T 1
t (x, y) + T 2

t (x, y) + T 3
t (x, y) ,

with

T 1
t (x, y) =

∫ t

0

∫
S1

(p′t−s(y − z)− p′t−s(x− z))(vs(z)− vs(x)) dYs(z) ds ,

T 2
t (x, y) =

∫ t

0
(vs(x)− vt(x))

∫
S1

(p′t−s(y − z)− p′t−s(x− z)) dYs(z) ds ,

T 3
t (x, y) = vt(x)(PtΦ0(y)− PtΦ0(x)) .

As a shorthand, we furthermore rewrite T it as

T it (x, y) =

∫ t

0
T it,s(x, y) ds , i = 1, 2 .

Setting α = 1
2 +2κ, it then follows from Proposition 3.14 that one has the inequality

‖T 1
t,s‖ 1

2
+2κ . (t− s)−

3
4
−2κ‖vs‖ 1

2
−κ‖Ys‖ 1

2
−κ + (t− s)−

3
4
−κKs . (4.5)

On the other hand, it follows from Corollary 3.15 that

‖T 2
t,s‖ 1

2
+2κ . (t− s)−1− 3κ

2 ‖Ys‖ 1
2
−κ ‖vs − vt‖∞ . (4.6)

Finally, we have
‖T 3

t ‖ 1
2

+2κ . t−
3κ
2 ‖vt‖∞‖Φ0‖ 1

2
−κ , (4.7)

as a consequence of the regularising properties of the heat equation. Collecting all
of these bounds concludes the proof.

In order to make the bound (4.6) integrable in s, we see that if we want to be
able to set up a fixed point argument, we also need to obtain some time regularity
estimates onMv. We achieve this with the following bound:

Proposition 4.2 Let v be a smooth function and let ṽ def
=Mv. Then, the bound

‖ṽt − ṽs‖∞ .
∫ s

0

∫ t

s
((q − r)−

7
4
−κ

2 ‖vr‖∞‖Yr‖ 1
2
−κ + (q − r)−

3
2
−κK κ

r ) dq dr

+

∫ t

s
(t− r)−

3
4
−κ

2 ‖vr‖∞‖Yr‖ 1
2
−κ dr +

∫ t

s
(t− r)−

1
2
−κK κ

r dr . (4.8)

holds.
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Proof. In order to achieve such a bound, we write for 0 < s ≤ t

(Mv)t(x)− (Mv)s(x) =

∫ s

0

∫
S1

(p′t−r(y − z)− p′s−r(y − z))vr(z) dYr(z) dr

+

∫ t

s

∫
S1

p′t−r(y − z)vr(z) dYr(z) dr

=

∫ s

0

∫ t

s

∫
S1

p′′′q−r(y − z)vr(z) dYr(z) dq dr

+

∫ t

s

∫
S1

p′t−r(y − z)vr(z) dYr(z) dr ,

where we used the identity ∂tpt(x) = p′′t (x) to obtain the second identity. The
claimed bound then follows in a straightforward way from Corollary 3.12.

We can also obtain a bound on the Hölder norm ofMv that is slightly better
than the one that can be deduced from the bound on RMt . It follows indeed from
Corollary 3.16 that, for every κ̄ ∈ (0, κ) and every κ < 1

2 , one has the bound

‖(Mv)t‖ 1
2
−κ .

∫ t

0
(t− s)−

3
4
−κ

2 (‖vs‖ 1
2
−κ‖Ys‖ 1

2
−κ + K κ

s ) ds

+

∫ t

0
(t− s)

κ−κ̄
2
−1‖vs‖∞‖Ys‖ 1

2
−κ̄ ds .

(4.9)

Finally, we obtain from Corollary 3.12 the following bound on the supremum
norm ofMv:

‖(Mv)t‖∞ .
∫ t

0

(
(t− s)−

3
4
−κ

2 ‖vs‖∞‖Ys‖ 1
2
−κ + (t− s)−

1
2
−κK κ

s

)
ds . (4.10)

With these calculations at hand, we are now ready to build a norm in which we can
solve (4.1) by a standard Banach fixed point argument.

4.2 Bounds on the fixed point map
We are now almost ready to tackle the problem of constructing local solutions to
(4.1). In the remainder of this section, we will apply the results from the previous
subsection with the special case Z = Φ. We furthermore assume that there exists a
process Y such that (4.4) holds, again with the choice Z = Φ.

The above calculations suggest the introduction of a collection of space-time
norms controlling the various quantities appearing there for functions taking values
in spaces of rough paths controlled by Φ. Given a pair of functions v and v′ in
C([0, T ]× S1), we define the corresponding “remainder” process Rt as before by

Rvt (x, y) def
= vt(y)− vt(x)− v′t(x)(Φt(y)− Φt(x)) , (4.11)

where the process Φ is as in (4.3). We also define the derivative process ofMv to
be given by (Mv)′ = v.
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Withe these notations at hand, we fix a (small) value κ > 0 and we define the
norms

‖v‖1,T
def
= sup

0<t≤T
tα‖vt‖ 1

2
−κ , ‖v‖2,T

def
= sup

0<t≤T
tα‖v′t‖C3κ ,

‖v‖3,T
def
= sup

0<t≤T
tα‖Rvt ‖ 1

2
+2κ , ‖v‖4,T

def
= sup

0<t≤T
tβ‖vt‖∞ ,

‖v‖5,T
def
= sup

0<s<t≤T

sγ

|t− s|δ
‖vt − vs‖∞ , ‖v‖?,T

def
=

5∑
j=1

‖v‖j,T ,

where α, β, γ, and δ are exponents in (0, 1) that are at this stage still to be determined.
We furthermore denote by B?,T the closure of C∞([0, T ]×S1) under ‖ · ‖?,T . Here,
we made an abuse of notation, since these (semi-)norms really are norms on the
pair of processes (v, v′) and not just on v. However, it will always be clear from the
context what v′ is, so we will usually omit it from our notations.

Our main result in this section is the following:

Proposition 4.3 Assume that Y , Φ and Y are as in (4.3) and (4.4) and that, for
some κ̄ < κ,

sup
t≤1

(‖Φt‖ 1
2
−κ̄ + ‖Yt‖ 1

2
−κ̄ + ‖Yt‖1−2κ̄) <∞ . (4.12)

Then, for every κ < 1
10 , there exist choices of α, β, γ, and δ in (0, 1) such that

‖Mv‖?,T . T θ‖v‖?,T ,

for some θ > 0, and all T ≤ 1. Here, the proportionality constant only depends on
the quantity appearing in (4.12).

Proof. In the sequel, we always take for granted that α, β, γ, δ ∈ (0, 1). We will
bound the various norms appearing in ‖ · ‖?,T separately, using the results from the
previous subsection. Noting that, by the definitions of ‖ · ‖?,T and K , we have the
bound

Kt . t−α‖v‖?,T .

As a consequence, we have from (4.9) that

‖(Mv)t‖ 1
2
−3κ . ‖v‖?,T

∫ t

0
((t− s)

κ−κ̄
2
−1s−β + (t− s)−

3
4
−κ

2 s−α) ds ,

so that, provided that

κ <
1

8
, (4.13a)

we obtain the bound

‖Mv‖1,T . (Tα+κ−κ̄
2
−β + T

1
4
−κ

2 ) ‖v‖?,T .
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In order for this to be bounded by a positive power of T , we impose the additional
condition

α > β . (4.13b)

Since (Mv)′t = vt by definition, the bound on ‖Mv‖2,T is somewhat trivial.
Using the simple interpolation bound ‖u‖α . ‖u‖(ᾱ−α)/ᾱ

∞ ‖u‖α/ᾱᾱ , which holds for
0 < α < ᾱ < 1, one has indeed the bound

‖Mv‖2,T = sup
t≤T

tα‖vs‖C3κ . sup
t≤T

tα(‖vt‖
1−8κ
1−2κ
∞ ‖vt‖

6κ
1−2κ
1
2
−κ + ‖vt‖∞)

. (T (α−β) 1−8κ
1−2κ + Tα−β)‖v‖?,T ,

which is bounded by a positive power of T , since we assumed that α > β.
For the bound on Rt, we make use of Proposition 4.1, which yields the bound

‖Mv‖3,T . ‖v‖?,T sup
t≤T

tα
∫ t

0
((t− s)−

3
4
−2κs−α + (t− s)δ−1− 3κ

2 s−γ) ds

+ ‖v‖?,TTα−
3κ
2
−β .

Provided that the additional condition

δ >
3κ

2
(4.13c)

holds, we conclude that

‖Mv‖3,T . (T
1
4
−2κ + Tα+δ−γ− 3κ

2 + Tα−β−
3κ
2 )‖v‖?,T ,

yielding the additional conditions

α+ δ > γ +
3κ

2
, α > β +

3κ

2
. (4.13d)

We now turn to the bound on ‖vt‖∞. It follows from (4.10) that

‖(Mv)t‖∞ . ‖v‖?,T
∫ t

0
((t− s)−

κ
2
− 3

4 s−β + (t− s)−κ−
1
2 s−α) ds ,

which yields the bound

‖Mv‖4,T . (T
1
4
−κ

2 + T β−α+ 1
2
−κ)‖v‖?,T ,

so that we have the additional condition

β > α− 1

2
+ κ . (4.13e)

The last bound turn out to be slightly less straightforward. Indeed, we obtain
from Proposition 4.2 the bound

‖(Mv)t − (Mv)s‖∞ . ‖v‖?,T
∫ s

0

∫ t

s

( (q − r)−
7
4
−κ

2

rβ
+

(q − r)−
3
2
−κ

rα

)
dq dr



40 FIXED POINT ARGUMENT

+ ‖v‖?,T
∫ t

s

dr

rβ(t− r)
3
4

+κ
2

+ ‖v‖?,T
∫ t

s

dr

rα(t− r)
1
2

+κ
. (4.14)

In order to bound the first term, we make use of the inequality∫ t

s

dq

(q − r)ζ
.
|t− s|
|s− r|ζ

∧ |s− r|1−ζ ≤ |t− s|δ|s− r|1−δ−ζ ,

which is valid for every ζ > 1, δ ∈ [0, 1], and r < s < t. In particular, this implies
that∫ s

0

∫ t

s

( (q − r)−
7
4
−κ

2

rβ
+

(q − r)−
3
2
−κ

rα

)
dq dr . |t−s|δ(s

1
4
−κ

2
−β−δ+s

1
2
−κ−α−δ) .

A similar calculation allows to bound the terms on the second line of (4.14).
Indeed, for ζ, η ∈ (0, 1), δ ∈ [0, 1− ζ], and s < t, one has the bound∫ t

s

dr

rη(t− r)ζ
. |t− s|1−ζ(s−η ∧ |t− s|−η) . |t− s|δ(1 ∨ s1−ζ−η−δ) . (4.15)

It follows from all of these considerations that, provided that

δ ≤ 1

4
− κ

2
, (4.13f)

one obtains the bound

‖Mv‖5,T . (T γ−β−δ+
1
4
−κ

2 + T γ−α−δ+
1
2
−κ)‖v‖?,T .

As a consequence, we impose the condition

γ >
(
β + δ − 1

4
+
κ

2

)
∨
(
α+ δ − 1

2
+ κ
)
. (4.13g)

It now remains to check that the conditions (4.13a)–(4.13g) can be satisfied
simultaneously for κ small enough. For example, we can set

α = 1− 2κ , β =
1− κ

2
, γ = 1− 2κ , δ = 2κ . (4.16)

With these definitions, it is straightforward to check that the conditions (4.13a)–
(4.13g) are indeed satisfied, provided that one chooses κ < 1

10 .

Remark 4.4 It follows from the proof of Proposition 4.3 and from Proposition 3.3
that the mapM is actually uniformly continuous on bounded sets.
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4.3 Construction of solutions
We now have all the ingredients in place for the proof of our main uniqueness result.
We define solutions to (4.1) as solutions to the fixed point problem

v = M̂(v) , (4.17)

where M̂ is the nonlinear operator given by

(M̂(v))t = Ptv0 + (MG(v·, ·))t + ∂x

∫ t

0
Pt−sF (vs, s) ds , (4.18)

where Pt denotes the heat semigroup. For fixed t > 0, we will consider (M̂(v))t as
a path controlled by Φt and we define its derivative process as

(M̂′(v))t = G(vt, t) .

We will assume in this section that the nonlinearity F can be split into two parts
F = F1 + F2, with different regularity properties. Our precise assumptions on F1,
F2 and G are summarised in the following three assumptions:

Assumption 4.5 For every t > 0, the map F1(·, t) maps C(S1) into itself. Further-
more, it satisfies the bounds

‖F1(v, t)‖∞ . 1+‖v‖2∞ , ‖F1(u, t)−F1(v, t)‖∞ . ‖u−v‖∞(1+‖u‖∞+‖v‖∞) ,

for all u and v in C(S1), with a proportionality constant that is uniform over
bounded time intervals.

Assumption 4.6 There exists η < 1
2 such that, for every t > 0, the map F2(·, t)

maps C(S1) into C−η. Furthermore, it satisfies the bounds

‖F2(v, t)‖−η . 1 + ‖v‖∞ , ‖F2(u, t)− F2(v, t)‖−η . ‖u− v‖∞ ,

for all u and v in C(S1), with a proportionality constant that is uniform over
bounded time intervals.

Assumption 4.7 For every t > 0, the map G(·, t) maps C(S1) into itself. Further-
more, if (v, v′) is controlled by Φt, then this is also the case for G(v, t), for some

“derivative process” G′(v, v′, t). Denote by Rvt the remainder for (v, v′) and by RGt
the remainder for (G(v, t), G′(v, v′, t)). Then, there exists κ ∈ (0, 1

4 ) such that, for
every ζ ∈ (0, 1

2 − κ), one has the bounds

‖G(v, t)‖ζ . 1 + ‖v‖ζ , ‖G(u, t)−G(v, t)‖ζ . ‖u− v‖ζ .

Furthermore, for the same κ > 0, one has the bounds

‖G(v, t)−G(v, s)‖∞ . |t− s|2κ ,
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‖G(v, t)−G(u, t)−G(v, s) +G(u, s)‖∞ . ‖u− v‖∞ ,

‖G′(v, t)‖C3κ . 1 + ‖v′‖C3κ + ‖v‖
C

1
2−κ

+ ‖Rvt ‖ 1
2

+2κ ,

‖G′(u, u′, t)−G′(v, v′, t)‖C3κ . ‖u′ − v′‖C3κ + ‖u− v‖
C

1
2−κ

+ ‖Rut −Rvt ‖ 1
2

+2κ ,

‖RG(v)
t ‖ 1

2
+2κ . 1 + ‖v′‖C3κ + ‖v‖

C
1
2−κ

+ ‖Rvt ‖ 1
2

+2κ ,

‖RG(u)
t (u)−RG(v)

t (v)‖ 1
2

+2κ . ‖u′ − v′‖C3κ + ‖u− v‖
C

1
2−κ

+ ‖Rut −Rvt ‖ 1
2

+2κ ,

with a proportionality constant that is uniform over bounded time intervals.

We now have all the necessary ingredients to solve (4.18) by a fixed point
argument.

Theorem 4.8 Assume that there exist κ < 1
12 and η < 1

2 − 2κ such that Assump-
tions 4.5–4.7 hold. Assume furthermore that Y , Φ and Y are as in (4.3) and (4.4)
and that the bound (4.12) holds for some κ̄ ∈ (0, κ).

Then, for every initial condition v0 ∈ Cζ−1 with ζ > 2κ, there exists a choice
of exponents α, β, γ and δ such that the nonlinear operator M̂ maps B?,T into
itself for every T > 0. Furthermore, there exists T? > 0 such that the fixed point
equation (4.17) admits a solution in B?,T? , and this solution is unique.

Proof. We choose α, β, γ and δ as in (4.16). With this choice, it suffices to show
that there exists T > 0 such that M̂ maps some ball of B?,T into itself and is a
contraction there.

We first consider the first term in M̂, namely Ptv0. It follows from Proposi-
tion A.11 that one has the bounds

‖Ptv0‖ 1
2

+2κ . t−
3
4 ‖v0‖ζ−1 , ‖Ptv0‖∞ . tκ−

1
2 ‖v0‖ζ−1 ,

as well as

‖Ptv0 − Psv0‖∞ = ‖(Pt−s − 1)Psv0‖∞ . |t− s|δ‖Psv0‖2δ
. |t− s|δsκ−δ−

1
2 ‖v0‖ζ−1 . (4.19)

Here, we made use of the fact that ζ > 2κ by assumption. Since, by our assumptions,
we have α > 3

4 , β > 1
2 − κ, and γ > 1

2 + δ − κ, it follows that we have the bound

‖P·v0‖?,T . T θ‖v0‖ζ−1 ,

for some θ > 0. (Note that we consider the derivative process of Ptv0 to be simply
0.)

In the next step, define a nonlinear map N by

(N v)t = ∂x

∫ t

0
Pt−sF (vs, s) ds .



FIXED POINT ARGUMENT 43

It then follows from Proposition A.11 and the assumptions on F that

‖(N v)t‖ 1
2

+2κ .
∫ t

0

(
(t− s)−κ−

3
4 ‖F1(vs, s)‖∞ + (t− s)−

η
2
− 3

4
−κ‖F2(vs, s)‖−η

)
ds

. (1 + ‖v‖?,T )2
∫ t

0

(
(t− s)−κ−

3
4 s−2β + (t− s)−

η
2
− 3

4
−κs−β

)
ds

. (1 + ‖v‖?,T )2
(
T

1
4
−κ−2β + T

1
4
− η

2
−κ−β

)
. (4.20a)

Similarly, the supremum norm is bounded by

‖(N v)t‖∞ . (1 + ‖v‖?,T )2
(
T

1
2
−2β + T

1
2
− η

2
−β
)
. (4.20b)

Regarding the time regularity bound, we have as in (4.19) the bound

‖(N v)t − (N v)s‖∞ .
∫ t

s

(
(t− r)−

1
2 ‖F1(vr, r)‖∞ + (t− r)−

η
2
− 1

2 ‖F2(vr, r)‖−η
)
dr

+ |t− s|δ
∫ s

0
(s− r)−

1
2
−δ‖F1(vr, r)‖∞ dr

+ |t− s|δ
∫ s

0
(s− r)−

η
2
− 1

2
−δ‖F2(vr, r)‖−η dr . (4.21)

Making use of the bound (4.15) and otherwise proceeding as before, we conclude
that

‖(N v)t− (N v)s‖∞ . |t− s|δ(1 + ‖v‖?,T )2
(
T

1
2
−2β−δ +T

1
2
− η

2
−β−δ

)
. (4.20c)

Note here that, since κ < 1
12 by assumption, we have η < 1− 8κ. This ensures that

the bound δ < 1
2 −

η
2 − δ, which is required in (4.15), does indeed hold.

Collecting the bounds from (4.20), it is lengthy but straightforward to check
that, thanks to our assumptions on κ, η, and δ, there exists θ > 0 such that one does
have the bound

‖N v‖?,T . T θ(1 + ‖v‖?,T )2 .

Similarly, one can verify in exactly the same way that one also has the bound

‖Nu−N v‖?,T . T θ‖u− v‖?,T (1 + ‖u‖?,T + ‖v‖?,T ) .

Furthermore, the assumptions on the map G are set up precisely in such a way that
one has

‖G(v·, ·)‖?,T . 1 + ‖v‖?,T , ‖G(u·, ·)−G(v·, ·)‖?,T . ‖u− v‖?,T .

Combining this with Proposition 4.3, as well as the bounds on N and Ptv0 that we
just obtained, we conclude that

‖M̂v‖?,T . T θ(1 + ‖v‖?,T )2 ,

‖M̂u− M̂v‖?,T . T θ(1 + ‖u‖?,T + ‖v‖?,T )‖u− v‖?,T .
(4.22)
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It follows immediately that, for T > 0 small enough, there exists a ball around the
origin in B?,T which is left invariant by M̂ and such that M̂ admits a unique fixed
point in this ball.

The uniqueness of this fixed point in all of B?,T now follows from the following
argument. Denote by T? and v? the time horizon and fixed point that were just
constructed and assume that there exists a fixed point v 6= v? for M̂. Note now that,
by the definition of the norm ‖ · ‖?,T , the natural restriction operator from B?,T? to
B?,T is a contraction for every T < T?. Since it follows from (4.22) that there exists
some T ∈ (0, T?) such that M̂ is a contraction in the ball of radius ‖v‖?,T? in B?,T ,
this shows that on the interval [0, T ], v must agree with v?. The uniqueness claim
then follows by iterating this argument.

Once we do have a unique solution to a PDE, we can perform the usual kind of
bootstrapping argument to improve the regularity estimates provided “for free” by
the fixed point argument. In our case, we can certainly not expect the solution v to
be more regular than the process Φ, which in turn cannot be expected to be more
regular than Y . However, it is possible to slightly improve the regularity estimates
for the remainder term Rvt (x, y) defined in (4.11). Our current bounds show that
‖Rvt ‖ 1

2
+2κ <∞, which is not a very good bound in general.

Given the (lack of) regularity of F1, we certainly do not expect ‖Rvt ‖1 to be
finite, but it turns out that this can be approached arbitrarily close:

Proposition 4.9 Let the assumptions of Theorem 4.8 hold, let v be the unique
maximal solution to (4.18) with lifetime T?. Then, for 0 < s < t < T?, one has

‖vt − vs‖∞ . |t− s|γ , (4.23)

for every γ < 1
4 −

κ̄
2 . The proportionality constant is uniform over every compact

time interval in (0, T?). Furthermore, one has

‖Rvt ‖γ̄ <∞ ,

for every γ̄ < 1− (2κ̄ ∨ η) and every t ∈ (0, T?).

Proof. Since it is possible to concatenate solutions to (4.18), we can restart the
solution at some positive time. As a consequence, since we know that the solution
belongs to B?,T , we can assume that ‖vt‖ 1

2
−κ and ‖Rvt ‖ 1

2
+2κ are bounded uniformly

in time. Since we furthermore know that vt is controlled by Φt with remainder Rvt ,
we obtain that actually ‖vt‖ 1

2
−κ̄ is bounded. Furthermore, since v′t = G(vt, t) by

construction, we also have ‖v′t‖ 1
2
−κ̄ uniformly bounded.

It then follows form (4.21) that

‖N vt −N vs‖ . |t− s|γ ,

provided that γ < 1
2 −

η
2 . It follows from Proposition 4.2 that a similar bound holds

for the termMG(vt, t), provided that γ < 1
4 −

κ̄
2 , so that the first bound follows.
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For the second bound, it follows from Proposition A.11 that the bound holds for
N vt. To show that it also holds forMG(vt, t), it suffices to apply Proposition 4.1
by noting that the right hand side of that bound is integrable as soon as κ < 1

4 − κ̄,
thanks to the bound (4.23).

An important special case is given by the case when

G(v, t) = v + wt ,

for some fixed process w such that wt is controlled by Φt for every t with

sup
t≤T
‖w′t‖C3κ <∞ , sup

t≤T
‖Rwt ‖ 1

2
+2κ <∞ , sup

s,t≤T

‖wt − ws‖∞
|t− s|κ

<∞ ,

(4.24)
One then has:

Proposition 4.10 Let the assumptions of Theorem 4.8 hold and let G(v, t) = cv +
wt with w as above and c ∈ R. Let v be the unique maximal solution to (4.18) with
lifetime T?. Then, for every t ∈ (0, T?), one has the decomposition

e−cΦt(x)vt(x) =

∫ x

0
e−cΦt(z)wt(z) dΦt(z) +Rt(x) , (4.25)

with Rt ∈ Cγ̄ for every γ̄ < 1− (2κ̄ ∨ η).

Remark 4.11 The rough integral appearing on the right hand side is well-posed
since, by assumption,wt is controlled by Φt, so that the same is true for the integrand
in (4.25).

Remark 4.12 It is not guaranteed that
∫ 2π

0 e−cΦt(z)wt(z) dΦt(z) = 0, so the two
functions appearing in the right hand side of (4.25) are not necessarily periodic.
This is irrelevant however, since one can easily rectify this by adding to each of
them a suitable multiple of x.

Proof of Proposition 4.10. Setting ṽt(x) =
∫ x

0 e
−cΦt(z)wt(z) dΦt(z), it follows

from (4.24) and Theorem 3.2 that

δṽt(x, y) = e−cΦt(x)wt(x)δΦt(x, y) +Rṽt (x, y) , (4.26)

with ‖Rṽt ‖1−2κ̄ <∞.
On the other hand, we know from Proposition 4.9 that

δvt(x, y) = (cvt(x) + wt(x))δΦt(x, y) +Rvt (x, y) ,

with ‖Rvt ‖γ̄ <∞. In particular, this implies that

vt(y) = vt(x)(1 + cδΦt(x, y)) + wt(x) δΦt(x, y) +Rvt (x, y)
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= vt(x)ecδΦt(x,y) + wt(x) δΦt(x, y) + R̃vt (x, y) ,

where we also have ‖R̃vt ‖γ̄ <∞. Multiplying both sides by e−cΦt(y) and subtracting
(4.26) from the resulting expression, we obtain the identity

e−cΦt(y)vt(y)− e−cΦt(x)vt(x) =

∫ y

x
e−cΦt(z)wt(z) dΦt(z)

+ e−cΦt(y)R̃vt (x, y)−Rṽt (x, y) .

It follows that the function Rt defined in (4.25) satisfies the identity δRt(x, y) =
e−cΦt(y)R̃vt (x, y)−Rṽt (x, y), so that the claim follows at once.

5 Construction of the universal process

The aim of this section is to prove the convergence of the processes Y τ
ε to some

limiting processes Y τ . Actually, it turns out that the constant Fourier mode requires
a separate treatment, so we only consider the centred processes Xτ

ε here, which
were defined in (2.1). The aim of this section is to show that, for every binary tree
τ , there exists a process Xτ such that

Xτ = lim
ε→0

Xτ
ε ,

in a suitable sense, and to obtain quantitative estimates on Xτ .

5.1 Construction of X .

A crucial observation for the sequel is that, for k 6= 0, the covariance of the Fourier
modes of Xε is given by

EXε,k(s)Xε,`(t) = δk,−`
ϕ2(εk)
k2

exp(−k2|t− s|) .

Since Xε and Xε will virtually always arise via their spatial derivatives, it will be
convenient to introduce a notation for this. We therefore define X̄τ def

= ∂xX
τ as in

(2.8), and similarly for X̄τ
ε , so that one has the identity

EX̄ε,k(s)X̄ε,`(t) = δk,−`ϕ
2(εk) exp(−k2|t− s|) , (5.1)

provided that k 6= 0. This is where our convention (1.2) shows its advantage:
this choice of normalisation for the driving noise ensures that we do not have any
constant prefactor appearing in (5.1) so that, except for the constant mode, the
space-time correlation function of X̄ is precisely equal to the heat kernel.

With these notations at hand, the process Xε is given as the stationary solution
to

∂tXε = ∂2
xXε + Π⊥0 |X̄ε|2 , (5.2)
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so that its Fourier modes are given for k 6= 0 by the identity

Xε,k(t) =

∫ t

−∞
e−k

2(t−s)
∑
`∈Z

X̄ε,`(s)X̄ε,k−`(s) ds . (5.3)

We now show that Xε converges to a limiting process X in the following
sense:

Proposition 5.1 There exists a process X such that the weak convergence Xε →
X takes place in C([−T, T ], Cα) ∩ Cβ([−T, T ], C) for every α < 1, every β < 1

2 ,
and every T > 0.

Before we proceed to the proof, we recall Wick’s theorem (sometimes also called
Isserlis’s theorem) on the higher order moments of Gaussian random variables:

Proposition 5.2 Let T be a finite index set and let {Xα}α∈T be a collection of real
or complex-valued centred jointly Gaussian random variables. Then,

E
∏
α∈T

Xα =
∑

P∈P(T )

∏
{α,β}∈P

EXαXβ .

Proof of Proposition 5.1. The proof is an almost direct application of Proposi-
tion A.2 below. Indeed, writing Z? = Z \ {0} as a shorthand, we can set J = Z2

?

and write elements in J as κ = (k, `) ∈J . For κ = (k, `), we furthermore set
gκ(x) = exp(ikx) and Cε(κ) = ϕ(ε`)ϕ(ε(k− `)). With this notation, the involution
ι appearing in the assumptions is given by (k, `)↔ (−k, `).

Since it follows from (5.3) and Proposition 5.2 that

Xε (x, t) =
∑

κ=(k,`)∈J

gκ(x)Cε(κ)
∫ t

−∞
e−k

2(t−s)X̄`(s)X̄k−`(s) ds ,

we set

fκ(t) =

∫ t

−∞
e−k

2(t−s)X̄`(s)X̄k−`(s) ds ,

in order to be in the framework of Proposition A.2. It then follows from (5.1) that

Efκ(t)fκ̄(s) = δk,−k̄(δ`,−¯̀ + δ`−k,¯̀)Kκ(s, t) ,

where the kernels Kκ(s, t) are given for κ = (k, `) by

Kκ(s, t) =

∫ t

−∞

∫ s

−∞
e−k

2(t+s−r−r′)−`2|r−r′|−(k−`)2|r−r′| dr dr′

=

∫ t−s

−∞

∫ 0

−∞
e−k

2(t−s−r−r′)−`2|r−r′|−(k−`)2|r−r′| dr dr′ .
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Here we assumed t > s for simplicity, but the kernels are of course symmetric in s
and t. A lengthy but straightforward calculation then shows that one has the identity

Kκ(s, t) =
k2e−(`2+(k−`)2)|t−s| − (`2 + (k − `)2)e−k

2|t−s|

k2(k2 − `2 − (k − `)2)(k2 + `2 + (k − `)2)
. (5.4)

It will be convenient in the sequel to introduce the shorthand notation

∆κ,κ̄ = δk,−k̄(δ`,−¯̀ + δ`−k,¯̀) , κ = (k, `) , κ̄ = (k̄, ¯̀) .

With this notation, we then have, for Fκη as in Proposition A.2, the identity

Fκη(t) ∝ ∆κ,ηKκ(t, t) =
∆κ,η

k2(k2 + `2 + (k − `)2)
=

∆κ,η

2k2(k2 − k`+ `2)
.

Using Proposition A.3 below, we furthermore obtain from (5.4) the bound

F̂κη(s, t) ∝ ∆κ,η|Kκ(s, t)−Kκ(0, 0)| ≤ Fκη ∧
`2 + (k − `)2

k2 − k`+ `2
|t− s|2 .

In particular, for every β ≤ 1, one has

F̂κη(s, t) = ∆κ,η|t− s|2β
|`2 + (k − `)2|β|k|2β−2

k2 − k`+ `2
.

Since furthermore the Lipschitz constant of gκ is given by Gκ = |k|, the conditions
(A.2) boil down to ∑

k 6=0

|k|2α
∑
` 6=0

1

k2(k2 − k`+ `2)
<∞ ,

∑
k 6=0

|k|2β−2
∑
`6=0

|`2 + (k − `)2|β

k2 − k`+ `2
<∞ .

Approximating the sum by an integral, one can check that∑
`6=0

1

k2(k2 − k`+ `2)
.

1

k3
,

so that the first condition is indeed satisfied as soon as α < 1.
Regarding the second condition, one similarly obtains∑

`∈Z

|`2 + (k − `)2|β

k2 − k`+ `2
.

1

k1−2β
,

provided that β < 1
2 (otherwise, the expression is not summable). As a consequence,

the second condition reduces to k4β−3 being summable, which is again the case if
and only if β < 1

2 . This concludes the proof.
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Remark 5.3 It also follows from the proof that, for any fixed t,X (t) 6∈ H1 almost
surely, since one has E(Xk (t))2 ∼ 1

k3 .

Remark 5.4 In light of the construction just explained, we can understand how the
limit α = 1

8 arises in (1.6). Indeed, it turns out that α > 1
8 is precisely the borderline

for which the right hand side in (5.2) converges to a limit for every fixed value of t.
The reason why we can break through this barrier is that, instead of making sense
of the right hand side for fixed t, we only need to make sense of its time integral.
(This was already remarked in [GJ10, Ass11].)

If we use this trick and then continued with the classical tools as in [DPDT07],
we would however hit another barrier at α = 1

20 when the product X̄ X̄ ceases to
make sense classically (i.e. in the sense of Proposition A.9). Treating this term also
“by hand” in order to overcome that barrier, it would not be too difficult to make
sense of (1.6) for every α > 0. The most difficult barrier to break is the passage
from α > 0 to α = 0 since there are then infinitely many products that cease to
make sense classically. More precisely, it will be clear from the remainder of this
section that if τ is any tree of the form τ = [•, τ̄ ], then the product X̄ X̄τ does not
make sense classically.

5.2 A more systematic approach
We would now like to similarly construct a process X that is the limit of Xε as
ε→ 0. For k 6= 0, it follows from the definitions that

Xε,k(t) = i
∑
`∈Z

∫ t

−∞
e−k

2(t−s)(k − `)X̄ε,`(s)Xε,k−`(s) ds

= i
∑

`+m+p=k

∫ t

−∞

∫ s

−∞
e−k

2(t−s)−(k−`)2(s−r)(k − `)

× X̄ε,`(s)X̄ε,m(r)X̄ε,p(r) dr ds .

At this stage, it becomes clear that a somewhat more systematic approach to the
estimation of the correlations is needed. In principle, one could try the same “brute
force” approach as in Proposition 5.1 and obtain exact expressions for the correla-
tions of Xε , but it rapidly becomes clear that bounding the resulting expressions
is a rather boring and not very instructive task. By the time we want to construct
X , a brute force approach is definitely out of the question. Instead, we will now
provide a more systematic approach to estimating the correlations of Xτ

ε for more
complicated trees τ .

Although the setting is quite different, our approach is inspired by the classical
construction of Feynman diagrams in perturbative quantum field theory (see for
example [Pol05] for an introduction), with the heat kernel playing the role of the
propagator. We will associate to any given process Xτ a number of “Feynman
diagrams”, that turn out in our case to be graphs with certain properties. Each
of these graphs encodes a multiple sum of a multiple integral that needs to be
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Symbol Meaning

E(τ ) Edges of τ
V(τ ) Vertices of τ (including leaves)
`(τ ) Leaves of τ
i(τ ) Inner vertices of τ
L τ Proper integer labelling of edges of the tree τ
T τ Ordered real labelling of vertices of the tree τ
Pτ Pairings of two copies of the leaves of τ
L τ
P Elements in L τ ×L τ respecting the pairing P

Sτ Group of isometries of τ

Table 1: Notations for various objects associated to a given tree τ .

bounded in order to ascertain the convergence of the corresponding process Xτ
ε to a

limit. The main achievement of this section is to describe a very simple “graphical”
algorithm that provides a sufficient condition for this convergence which is not too
difficult to check in practice.

First, for a given binary tree τ 6= •, we introduce the set L τ of “proper”
labellings of τ which consists of all possible ways of associating to each edge e of
τ a non-zero integer Le ∈ Z?, with the additional constraints that Kirchhoff’s law
should be satisfied. In other words, for every node v that is neither the root nor a
leaf, the sum of the labels of the two edges connecting v to its children should be
equal to the label of the edge connecting v to its parent. For example, we have

6 1

2 4 ∈ L ,
2 1

2 4 6∈ L .

Given a labelling L ∈ L τ , we also denote by % the root vertex and by %(L) the
sum of the labels of the edges attached to %. (In the first example above, we would
have %(L) = 7.) Each label of a proper labelling should be thought of as a “Fourier
mode” and the reason behind Kirchhoff’s law is the way exponentials behave under
multiplication. The precise meaning of this will soon become clear.

For a given binary tree τ , we denote by `(τ ) the set of leaves and by i(τ ) the
set of inner vertices (the complement of `(τ ) in the set V(τ ) of all vertices of τ ). It
will then be useful to introduce a labelling of the interior vertices of a binary tree by
real numbers, which should this time be thought of as “times” instead of “Fourier
modes”. Denoting by “≤” the canonical partial order of a rooted tree (i.e. u ≤ v if
u lies on the path from v to the root), we denote by T τ the set of all labellings that
associate to each vertex v ∈ i(τ ) a real number Tv ∈ R with the constraints that
Tv ≤ Tv̄ if v̄ ≤ v. In our example, we have
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s

r ∈ T , (5.5)

provided that r ≤ s. We furthermore denote by µτt the restriction of Lebesgue
measure to the subset T τ

t of T τ given by {T% ≤ t}. With this notation, the example
shown in (5.5) belongs to Tt , provided that s ≤ t. A special case is given by τ = •
in which case we set Tt = T = {0} and µt = δ0.

Denoting by ι̂(τ ) = i(τ ) \ {%} the set of those interior vertices of τ that are
not the root vertex, we define, for each L ∈ L τ , a stochastic process ZτL on
{(t, T ) ∈ R×T τ : T ∈ T τ

t } by

ZτL(t, T ) = e−%(L)2(t−T%)
( ∏
v∈ι̂(τ )

iLe(v)e
−L2

e(v) |δTe(v)|
)( ∏

v∈`(τ )

X̄Le(v)
(Tv↓)

)
, (5.6)

where v↓ denotes the parent of v, e(v) denotes the edge (v, v↓), and δTe = Tv − Tu
for an edge e = (u, v).

Even though the tree • has an empty edge set, we set L ∼ Z? by convention,
by specifying %(L) as an arbitrary value in Z?. With this convention in place, we
also set

ZL(t, T ) = X%(L)(t) .

Finally, for L ∈ L τ , we write

Cε(L) def
=
∏
v∈`(τ )

ϕ(εLe(v)) , (5.7)

with the additional convention Cε(L) = ϕ(ε%(L)) for L ∈ L .
With all of these notations at hand, we then have the following identity:

Proposition 5.5 For every binary tree τ and every index k 6= 0, one has the identity

Xτ
ε,k(t) =

∑
L∈L τ

%(L)=k

Cε(L)
∫

T τ
t

ZτL(t, T )µτt (dT ) . (5.8)

Proof. We proceed by induction over the set of all binary trees, taking as induction
parameter the number of leaves of τ . The identity is true by definition if τ = •. If
τ 6= •, we can always write τ = [κ, κ̄], where κ and κ̄ are trees that have less leaves
than τ , so that we assume that the identity (5.8) holds true when τ is replaced by
either κ or κ̄.

We then have the identity

Xτ
ε,k(t) =

∑
`+m=k

∫
s≤t

e−k
2|t−s|X̄κ

ε,`(s) X̄
κ̄
ε,m(s) ds

=
∑

`+m=k

∑
L∈Lκ

%(L)=`

∑
L̄∈L κ̄

%(L̄)=m

Cε(L)Cε(L̄)
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×
∫
s≤t

(i`)(im)e−k
2|t−s|ZκL(s, T )Z κ̄L̄(s, T̄ )µκs (dT )µκ̄s (dT̄ ) ds ,

where we used the induction hypothesis and the fact that k = `+m to go from the
first to the second line. Note now that one has the following simple facts:
• For τ = [κ, κ̄], there is a natural bijection K: L κ ×L κ̄ → L τ as follows.

Given L ∈ L κ and L̄ ∈ L κ̄, one identifies the edges of κ and κ̄ with the
corresponding subset of the edges of τ and uses the labels L and L̄ to label
them. One then labels the two edges connecting the root of τ to κ and κ̄ by
%(L) and %(L̄) respectively. Note that thanks to our convention for L , this
recipe also yields a bijection when one of the trees is the trivial tree.

• For τ = [κ, κ̄] and s ∈ R, there is a natural map K̄s: T κ
s × T κ̄

s → T τ
s

obtained by associating s to the root vertex of τ , but otherwise leaving the
labels of the interior vertices of κ and κ̄ untouched. Furthermore, one has
the disintegration∫

T τ
t

F (T )µτt (dT ) =

∫ t

−∞

∫
T κ
s

∫
T κ̄
s

F (K̄s(T, T̄ ))µκs (dT )µκ̄s (dT̄ ) ds ,

for every integrable function F : T τ
t → R.

As a consequence, we can rewrite the desired identity (5.8) as

Xτ
ε,k(t) =

∑
`+m=k

∑
L∈Lκ

%(L)=`

∑
L̄∈L κ̄

%(L̄)=m

Cε(K(L, L̄))

×
∫
s≤t

ZκK(L,L̄)(K̄s(T, T̄ ))µκs (dT )µκ̄s (dT̄ ) ds .

However, it follows from the definition (5.6) of Z and from the definition of the
isometry K that one has the identity

ZτK(L,L̄)(t, K̄s(T, T̄ )) = ike−k
2|t−s|ZκL(s, T )Z κ̄L̄(s, T̄ ) ,

whenever τ = [κ, κ̄] and L% + L̄% = k. Our conventions are set up in such a way
that this is true even if some of the trees involved are the trivial tree. Since one has
furthermore the identity Cε(K(L, L̄)) = Cε(L)Cε(L̄), the claim follows.

The computation of the correlations of Xτ
ε is thus reduced to the computation

of the correlations of ZτL, even though these then have to be integrated over T τ
t and

summed over L, which is potentially no easy task.
In order to compute correlations of polynomials of Gaussian random variables,

a useful notion is that of a pairing of a set T with |T | ∈ 2N. We first denote the set
of all possible pairs of T by S2(T ) def

= {A ⊂ T : |A| = 2}. With this notation, the
set of all pairings of T is given by

P(T ) def
=
{
P ⊂ S2(T ) :

⋃
P = T & p ∩ q = ∅ ∀p 6= q ∈ P

}
.
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In other words, P(T ) consists of all partitions of T that are made up of pairs. By
definition, P(T ) = ∅ whenever |T | is odd.

Since we want to estimate second moments of the processes ZτL, the relevant
notion of pairing arising from Wick’s theorem will be that of a pairing of two copies
of the leaves of a binary tree τ . We thus introduce the shorthand notation

Pτ = P(`(τ ) t `(τ )) .

See (5.12) below for a graphical representation of an element of Pτ for τ = .

Definition 5.6 Given two labellings L, L̄ ∈ L τ , we denote by L t L̄ the map

(L t L̄): E(τ ) t E(τ )→ Z ,

which restricts to L (respectively L̄) on the first (respectively second) copy of E(τ ).
Here, E(τ ) denotes the set of edges of the binary tree τ .

Definition 5.7 Given a pairing P ∈ Pτ and L, L̄ ∈ L τ , we say that L t L̄ is
adapted to the pairing P if

(L t L̄)e(u) + (L t L̄)e(v) = 0 , ∀{u, v} ∈ P . (5.9)

We denote by L τ
P the set of all labellings of the form L t L̄ that are adapted to P .

Remark 5.8 Since %(L) =
∑

v∈`(τ ) Le(v), it follows from the definition that one
automatically has the identity %(L) + %(L̄) = 0 if L t L̄ ∈ L τ

P . As a consequence,
for every L̂ = LtL̄ ∈ L τ

P , the quantity |%(L̂)| is well-defined by |%(L̂)| = |%(L)| =
|%(L̄)|.

Given an inner node u ∈ i(τ ), we denote by D(u) = {v ∈ `(τ ) : u ≤ v} the
set of its descendants. In the case where two copies of a tree are considered, we
extend this definition in the natural way. A very important remark is the following:

Lemma 5.9 One has L τ
P 6= ∅ if and only if, for every inner node u ∈ i(τ ) t i(τ ),

there exists at least one pair {v, v̄} ∈ P such that v ∈ D(u) and v̄ 6∈ D(u).

Proof. To see that the condition is necessary, we note that if it fails, there exists at
least one inner node u such that all of its descendants are paired together. It then
follows from (5.9) and the definition of a proper labelling that Le(u) = 0, which is
excluded.

To see sufficiency, we can construct (L, L̄) as follows. First, we order the pairs
in P , so that each one is assigned a strictly positive integer p, and we label the
pth pair by (3p,−3p). The claim now follows form the fact that a sum of the form∑n

p=0 ap3
p with ap ∈ {−1, 0, 1} vanishes if and only if all the ap vanish. (This can

be seen by expressing the number
∑n

p=0(ap + 1)3p in basis 3.)
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Remark 5.10 We can introduce an equivalence relation on nodes of τ by setting
u ∼ v if and only if u↓ = v↓, i.e. if u and v share the same parent. As a consequence
of Lemma 5.9, we then note that if P ∈ Pτ contains a pair {u, v} with u ∼ v, then
L τ
P = ∅.

The importance of knowing for which pairings P one has L τ
P 6= ∅ is illustrated

by the following result:

Lemma 5.11 Let τ be a binary tree and let L, L̄ ∈ L τ , T ∈ T τ
t and T̄ ∈ T τ

t̄ .
Then, EZτL(t, T )Zτ

L̄
(t̄, T̄ ) 6= 0 if and only if there exists at least one pairing P ∈ Pτ

such that L t L̄ ∈ L τ
P .

Proof. It follows from (5.6) that, up to a non-vanishing numerical factor (that still
depends on τ , t, t̄, T and T̄ but is not random), one has

ZτL(t, T )ZτL̄(t̄, T̄ ) ∝
∏

u,v∈`(τ )

X̄Le(u)
(Tu↓)X̄L̄e(v)

(T̄v↓) .

Writing L̂ = L t L̄ and similarly T̂ = T t T̄ , it then follows from (5.2) that

EZτL(t, T )ZτL̄(t̄, T̄ ) ∝
∑
P∈Pτ

∏
{u,v}∈P

EX̄
L̂e(u)

(T̂u↓)X̄L̂e(v)
(T̂v↓) . (5.10)

This shows that the condition is necessary since, by (5.1), the terms in this product
are all non-vanishing if and only if L̂ ∈ L τ

P . Its sufficiency is then a consequence
of the positivity of (5.1).

We finally introduce a notion of isometry of a tree τ that will be useful to identify
terms that yield identical contributions.

Definition 5.12 Denote by V(τ ) = i(τ )t`(τ ) the set of all vertices of τ . A bijection
σ:V(τ ) → V(τ ) is called an isometry of τ if v ∼ u if and only if σ(u) ∼ σ(v),
with “∼” as in Remark 5.10. In other words, it is an isometry if it preserves “family
relations”. We denote by Sτ the group of all isometries of τ .

Remark 5.13 Any isometry σ extends in a natural way to E(τ ) by σ(u, v) =
(σ(u), σ(v)), where the definition of an isometry ensures that the object on the right
is again an edge of τ .

Remark 5.14 The tree contains only one non-trivial isometry, which is the one
that exchanges the two top leaves. The tree on the other hand contains many
more isometries since one can also exchange the two branches attached to the root
for example.
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As a consequence, there are natural actions of Sτ on L τ and T τ by

(σL)e = Lσ−1e , (σT )(v) = T (σ−1v) ,

for L ∈ L τ and T ∈ T τ . There is also a natural action of Sτ × Sτ on Pτ by

σ̂P = {{σ̂u, σ̂v} : {u, v} ∈ P} ,

where we interpret elements in Sτ × Sτ as bijections of `(τ ) t `(τ ). Note that L τ
P

is covariant under this action in the sense that, for σ, σ̄ ∈ Sτ , one has

L t L̄ ∈ L τ
P ⇔ (σL) t (σ̄L̄) ∈ L τ

(σ×σ̄)P .

For every binary tree τ , every P ∈ Pτ , and every L̂ ∈ L τ
P , we now define

a quantity Kτ (P, L̂; δ), which will be the basic building block for computing the
correlations of Xτ

ε , by

Kτ (P, L̂; δ) def
=

∫
T τ

0

∫
T τ
δ

e−%(L̂)2(δ−T%−T̄%̄)
( ∏
v∈ι̂(τ )tι̂(τ )

L̂e(v)e
−L̂2

(v)(T̂v↓−T̂v)
)

×
( ∏
{u,v}∈P

e−L̂
2
e(v)|T̂u↓−T̂v↓ |

)
µτδ (dT )µτ0(dT̄ ) , (5.11)

where we used the shorthand notation T̂ = T t T̄ and where we denoted by % and
%̄ the two copies of the root of τ . For v belonging to one of the two copies of the
original tree τ , we again denote by v↓ its parent and by e(v) the edge that connects
it to its parent. On the second line, we could of course have written L̂e(u) instead of
L̂e(v) since, by the definition of L τ

P , they only differ by a sign.
One then has the following fact:

Lemma 5.15 For every σ̂ ∈ Sτ × Sτ , one has Kτ (σ̂P, σ̂L̂; · ) = Kτ (P, L̂; · ).

Proof. It suffices to notice that the integrand is preserved under isometries, provided
that one also applies it to T t T̄ . The claim now follows from the fact that isometries
leave µτt invariant.

We are now almost ready to state the main result in this section. Before we do so
however, we still need to introduce one final notation. Given a tree τ and a pairing
P ∈ Pτ , we denote by `P` (τ ) the set of leaves in `(τ ) t `(τ ) with the property
that, for every v ∈ `P` (τ ), there exists a pair {u, ū} ∈ P such that v ∈ {u, ū} and
such that the parent of u is equal to the grandparent of ū. (In terms of genealogy,
`P` (τ ) contains all pairings between a nephew and his uncle.) For example, in the
following pairing of the tree , the set `P` (τ ) consists of exactly two leaves that are
distinguished by being filled with white:

. (5.12)
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Given any two labellings L, L̄ ∈ L τ
P , we then write L P∼ L̄ if |Le(v)| = |L̄e(v)| for

all v ∈ `(τ ) t `(τ ) and furthermore Le(v) = L̄e(v) for all v ∈ (`(τ ) t `(τ )) \ `P` (τ ).
In other words, L and L̄ are only allowed to differ by changing the signs of the
labels adjacent to `P` (τ ). This allows to define a “symmetrised” kernel Kτsym by

Kτsym(P,L; δ) def
=

1

|[L]P |
∑
L̄
P∼L

Kτ (P, L̄; δ) ,

where [L]P denotes the equivalence class ofL under P∼ and |·| denotes its cardinality.
With this final notation at hand, the main result of this section is the following:

Theorem 5.16 For a given τ ∈ T2 \ {•}, if there exist α > 0 and β ∈ (0, 1) such
that, for every P ∈ Pτ/(Sτ × Sτ )∑

L̂∈L τ
P

sup
δ∈R
|%(L̂)|2α|Kτsym(P, L̂; δ)| <∞ , (5.13a)

∑
L̂∈L τ

P

sup
|δ|≤1

|Kτsym(P, L̂; 0)−Kτsym(P, L̂; δ)|
δ2β

<∞ , (5.13b)

then the sequence of processes Xτ
ε converges to a limit Xτ in probability in

C([0, T ], Cγ) ∩ Cδ([0, T ], C), provided that γ < α and δ < β.

Proof. This is a rather straightforward application of Proposition A.2. Without loss
of generality, we can assume that α ≤ 1, since otherwise it suffices to consider the
appropriate derivative of Xτ

ε . We first introduce an equivalence relation ∼ on L τ

by stipulating that L ∼ L̄ if and only if |Le(v)| = |L̄e(v)| for every v ∈ `(τ ) and
%(L) = %(L̄). We then define a symetrised family of processes FL by

FL(t) =
1

|[L]|
∑
L̄∈[L]

∫
T τ
t

ZτL̄(T )µτt (dT ) ,

where we denote by [L] the equivalence class of L under ∼. Writing furthermore
gL(x) = ei%(L)x and noting that both Cε(L) = Cε(L̄) and gL = gL̄ for L ∼ L̄ by
definition, it then follows from Proposition 5.5 that

Xτ
ε (x, t) =

∑
L∈L τ

Cε(L)FL(t) gL(x) ,

so that we are precisely in the framework considered in Proposition A.2, provided
that we set J = L τ for our index set.

With these notations at hand, it then follows from (5.6), Proposition 5.2, and the
definition of Kτ that

EFL(t)FL′(t′) =
1

|[L]| |[L′]|
∑
L̄∈[L]
L̄′∈[L′]

∑
P∈Pτ

1L̄tL̄′∈L τ
P
Kτ (P, L̄t L̄′; t− t′) . (5.14)
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Note now that if L̄ t L̄′ P∼ L t L′ then, by the definition of ∼, one also has L̄ ∼ L
and L̄′ ∼ L′. As a consequence, we can replace K by Ksym in (5.14), so that the
claim follows Proposition A.2, noting that we can restrict ourselves to equivalence
classes of Pτ under isometries by Lemma 5.15.

Remark 5.17 Of course, since Kτsym is constructed from a finite number of copies
of Kτ , we also have the same criterion with Kτ instead. However, it turns out that in
some of the situations that we are lead to consider, Kτ fails to satisfy (5.13), while
Kτsym does, due to some cancellations.

5.3 Reduction to simpler trees
There is one situation in which the estimate of Kτsym(P, ·; ·) for one tree can benefit
from bounds on a simpler tree. This is when we consider a tree τ̄ of the form
τ̄ = [τ, •] and a pairing P̄ consisting of pairing the two copies of τ according to
some pairing P ∈ Pτ and then pairing the two remaining leaves. We denote by P τ̄s
the set of all such pairings.

In this case, we have:

Proposition 5.18 Let τ̄ and P̄ ∈ P τ̄s be as above and assume that the bound
(5.13a) holds for Kτsym(P, ·; ·) with some α ≥ 0. Then, the bounds (5.13) hold for
Kτ̄sym(P̄ , ·; ·) with ᾱ < 3

2 ∧ (α+ 1
2) and β̄ < 1∧ᾱ

2 .

Proof. Let L ∈ L τ
P be a labelling with %(L) = k. Then, for every m ∈ Z?, we can

construct a corresponding labelling L̄ ∈ L τ̄
P̄

with %(L̄) = m by labelling the two
paired copies of τ according to L, using the labels (k,−k) for the edges joining
the roots of the copies of τ to the roots of the copies of τ̄ , and assigning the labels
(m− k, k −m) to the two remaining edges. With this notation, it follows from the
definition of Kτsym that we have the identity

Kτ̄sym(P̄ , L̄; δ) = k2

∫ 0

−∞

∫ δ

−∞
Kτsym(P,L, s−s′)e−(k−m)2|s−s′|−m2(δ−s−s′) ds ds′ .

In particular, it follows from Lemma A.7 that

Kτ̄sym(P̄ , L̄; 0) .
k2‖Kτsym(P,L; ·)‖∞
m2(k2 +m2)

,

|Kτ̄sym(P̄ , L̄; δ)−Kτ̄sym(P̄ , L̄; 0)| . (1 ∧ δm2)
k2‖Kτsym(P,L; ·)‖∞
m2(k2 +m2)

.

For α ≥ 1, the numerators of these expressions are summable by assumption, so
that the corresponding bound holds. For α ≤ 1, we use the bound

k2

m2(k2 +m2)
≤ k2α

m2+2α
,

so that the claim follows at once.
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5.4 General summability criterion

In this section, we introduce a graphical criterion to verify whether Kτsym satisfies
the bounds of Theorem 5.16 for a given pairing P ∈ Pτ . Our criterion consists of
two steps: in a first step, we associate to a given pair (τ, P ) a family of weighted
graphs G τ

κ (P ). Elements of G τ
κ (P ) all share the same underlying graph and only

differ by the weights given to their edges. In a second step, we need to check that
G τ
κ (P ) contains at least one element that can be reduced to a loop-free graph by a

certain reduction procedure.
The weighted graphs in G τ

κ (P ) are built in several steps in the following way.

1. Construction of the underlying graph. Informally, we build a graph (G, E) by
taking two disjoint copies of τ , joining all the vertices that belong to the same pair
of P , as well as the two roots, and then erasing all “superfluous” vertices that only
have two incoming edges. We will also henceforth denote by T ⊂ E the spanning
tree given by the interior edges of the two copies of the original tree τ , together
with the new edge ē connecting the two roots.

Example 5.19 For a typical pairing of the tree , we obtain the following graph,
where some oriented pairing P is depicted on the left (with two nodes belonging to
P if they are connected by a black arc) and the corresponding oriented graph (G, E)
is depicted on the right, with the spanning tree T drawn in grey and the glued edges
in black:

(5.15)

The distinguished edge ē joining the two copies of the root vertex is drawn as a
thicker grey line.

Formally, this can be achieved by setting G = (V(τ ) t V(τ ))/
P
≈ and

E = {(%, %̄)} ∪ (E(τ ) t E(τ ))/
P
≈ ,

where V(τ ) and E(τ ) are the vertex (resp. edge) set of τ and % and %̄ are the
two copies of the root. We will henceforth use the shorthand ē = (%, %̄) for the
distinguished edge connecting the two roots, as this will sometimes play a special
role.

Here, the equivalence relation
P
≈ is defined on V(τ ) t V(τ ) by setting u

P
≈ v↓

and v
P
≈ u↓ for every pair (u, v) ∈ P . This then induces a natural equivalence

relation on the edge set by (u, u↓)
P
≈ (v, v↓). Since τ is a binary tree, every vertex

of the graph (G, E) constructed in this way is of degree exactly 3. It inherits the
ordering of τ , but this ordering does not extend to the edges “glued” by

P
≈, since
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they are always glued in “opposite directions”. However, if we order the pairs in P ,
then this naturally defines an ordering on all of E .

2. Temporarily weigh edges. Build a weighting L̄0: E → R of the graph by giving
the weight κ to the edge ē connecting the two roots, the weight −1 to the remaining
edges in T , and the weight 0 to the remaining edges in E \ T .

3. Treat small loops. It turns out that occurrences of certain small loops (a pair of
vertices connected by two edges) cause summability problems that have to be cured
by a special procedure.

There are two types of such loops: either one of its edges belongs to T (let’s call
these “type 1”), or both of its edges belong to E \ T (“type 2”). Loops of the first
kind are the only “dangerous” ones, and they are handled by the following special
procedure. For each such loop, we shift a weight 1

3 into the loop from one of its
adjacent edges. More precisely, we build a weight L0 from L̄0 by performing the
substitution

⇒α β

0

−1

α β − 1
3

0

−2
3

Note that the small loop appearing in the example (5.15) is of type 1. It does not
matter which one of the two adjacent edges we shift the weights to.

4. Finalise the weights of the edges. We now finally construct the family G τ
κ of

weightings of the graph (G, E). Denote by L0: E → R the weighting obtained at the
end of the previous step and denote byW:G → R+ the map defined byW(v) = 0
for v ∈ ē andW(v) = 2 otherwise. In other words, we associate a weight 2 to every
vertex except the two roots.

Define now E0 = ∅ and G0 = ∅ and recursively construct subsets En ⊂ E
and Gn ⊂ G in the following way. Assuming that En and Gn have already been
constructed and that Ln has been defined, we pick an arbitrary vertex v ∈ G \ Gn
and consider the set Env of edges attached to v that are not in En. We then choose
an arbitrary function Wn:Env → R+ with

∑
e∈Env Wn(e) = W(v) and we set

Ln+1 = Ln + Wn, En+1 = En ∪ Env , Gn+1 = Gn ∪ {v}. The construction
terminates when En = E , and we denote the weight constructed in this way by L.

Loosely speaking, we distribute the weights “2” given byW among each vertex’s
neighbouring edges, with the constraint that once the weight of a given vertex has
been distributed, none of its adjacent edges can receive any more weight from its
other vertex.

Definition 5.20 The set G τ
κ (P ) consists of all the possible weightings L: E → R

that can be obtained from the procedure outlined above and that are such that
L(e) > 0 for all edges e belonging to a small loop.
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Remark 5.21 Since it will usually be advantageous to have only positive weights
left, and since the elements in the original spanning tree T have weight −1 before
the vertex weights are distributed, it is usually be a good idea in Step 4 to traverse
vertices in G in a way that respects the ordering of T , i.e. from the outside of T
towards the two root vertices.

The point of this construction is that it is quite straightforward to obtain a bound
onKτsym(P, ·, ·) from the weights in G τ

κ (P ), but understanding why this is so requires
a few notions of elementary graph theory, which we now present.

Given an arbitrary directed graph (G, E), we write e→ v for an edge e entering
a vertex v (i.e. e = (u, v) for some u ∈ G) and e ← v for an edge e exiting v (i.e.
e = (v, u) for some u ∈ G). With this notation, the integral cycle group C (G, E)
of a graph is given by all labellings L: E → Z such that, for each vertex v ∈ G,
Kirchhoff’s law is satisfied in the sense that∑

e→v
Le =

∑
e←v

Le .

Note that even though we used the fact that we specified an orientation to define
C (G, E), it really does not depend on it. Indeed, if we consider two different
orientations on the same graph, we should identify elements in their respective cycle
groups if they agree on those edges that do not change orientation and have opposite
signs on those edges that do change orientation. We also introduce a notation for
the set of nowhere vanishing elements of the cycle group:

C?(G, E) = {L ∈ C (G, E) : Le 6= 0 ∀ e ∈ E} .

The reason why we introduced this notation is the following fact:

Lemma 5.22 There is a canonical identification of L τ
P with C?(G, E), where (G, E)

is the graph associated to τ and P as in Step 1 above.

Proof. Elements L ∈ L τ
P are defined on E(τ )t E(τ ) with the canonical orientation

that goes from the leaves to the roots, and they do satisfy Kirchhoff’s law there.
Furthermore, for any two edges e, e′ that are identified under

P
≈, one has Le =

−Le′ . As a consequence, a choice of orientation on P corresponds to a choice
of representative in each equivalence class of E(τ ) t E(τ ) under

P
≈. Denoting

this choice of representative by π, we then define an element C ∈ C?(G, E) by
Ce = Lπ(e) for e 6= ē and Cē = ±|%(L)|, with the sign determined in such a way
that Kirchhoff’s law also holds at the roots.

As an abelian group, C (G, E) is isomorphic to Zn for some n ≥ 0, called the
dimension of C . An integral basis B ⊂ C (G, E) then consists of exactly n elements,
with the property that every element of C (G, E) can be written uniquely as

L =
∑
B∈B

LB B , LB ∈ Z .
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In other words, an integral basis provides a decomposition that realises the isomor-
phism with Zn.

We call an element L of the cycle group elementary if there exists a simple cycle
of G (i.e. one traversing each edge at most once) such that L takes the values ±1 on
the edges belonging to the cycle and 0 otherwise. There are exactly two elementary
elements in C (G, E) for each simple cycle, one for each orientation. Finally, for any
spanning tree T of a graph (G, E), we can construct a collection BT of elementary
cycles by considering, for each edge e ∈ E \ T , the unique (modulo orientation)
cycle passing through e that otherwise only traverses edges in T . One then has the
following classical result, which can be found for example in [GR01]:

Proposition 5.23 For each spanning tree T of (G, E), the collection BT forms an
integral basis of C (G, E).

Let now (G, E ,L) be a weighted graph, i.e. L is a real-valued function over the
edge set E . We then introduce the following definition:

Definition 5.24 A weighted graph (G, E ,L) is summable if∑
L∈C?(G,E)

∏
e∈E
|Le|−Le <∞ .

With all of these definitions in place, we are now finally ready to state the
criterion for the bounds on Ksym announced earlier.

Theorem 5.25 Let G τ
κ (P ) be as above and let κ ∈ (0, 2). If there exists an element

of G τ
κ (P ) that is summable, then the kernel Kτsym(P, ·) satisfies the bounds (5.13)

with α = 2− κ
2 and β < 1∧α

2 .

Proof. It follows from the definition (5.11) that one can rewrite Kτsym in a natural
way as

Kτsym(P,L; δ) =

∫ 0

−∞

∫ δ

−∞
eL

2
%(δ−s−s′)Fτsym(P,L; s− s′) ds ds′ .

Here, the fact that Fτsym only depends on the difference between s and s′ is a
consequence of the invariance of the integrand in (5.11) under translations, but this
is not relevant. Both claimed bounds then follow at once from Lemma A.7 if we
are able to show that the constants Fτsym(P,L) def

= supδ |Fτsym(P,L; δ)| satisfy the
summability condition ∑

L∈C?(G,E)

|Lē|−κFτsym(P,L) <∞ , (5.16)

where we made the slight abuse of notation of considering L as an element in
C?(G, E) instead of L τ

P , which is justified by Lemma 5.22.
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Denote now Ē = E \ {ē} and T̄ = T \ {ē}. It then follows from the expression
(5.11) that Fτsym(P,L, η) can be written as

Fτsym(P,L; η) =
1

|[L]P |
∑
L̄
P∼L

(∏
e∈T̄

L̄e

)∫
exp
(
−
∑
e∈Ē

|L̄e|2|δTe|
)
µη(dT )

def
=

∫
GτP (L)µη(dT ) . (5.17)

Here, µη is the measure on RG which fixes the vertices adjacent to ē to 0 and η
respectively, and is given by Lebesgue measure, restricted to T τ

0 × T τ
η , for the

remaining components. As before, δTe = Tv − Tu for any edge e = (u, v).
Consider now the case when the graph contains loops of type 1. By Proposi-

tion 5.23, we can assume without loss of generality that the graph (G, E), the cycle
L, and the collection of “times” T are locally given by the configuration

s r
k k

m

k +m

(5.18)

with r ≤ s, and k,m ∈ Z? with k +m 6= 0. The left edge necessarily belongs to
T , but the right edge could be either in T or not. With this notation, let us write M
for the subset of E containing the two edges that form the loop under consideration.
It then follows from (5.17) that GτP can be factored as

GτP (L) =
1

2
Jk,m(s− r)GτP,M (L) ,

where he prefactor J is given by

Jk,m(s− r) def
= (k +m)e−((k+m)2+m2)|s−r| + (k −m)e−((k−m)2+m2)|s−r| ,

and the remainder GτP,M is given by

GτP,M (L) =
1

|[L]P |
∑
L̄
P∼L

( ∏
e∈T̄ \M

L̄e

)
exp
(
−
∑

e∈Ē\M

|L̄(u,v)|2|δTe|
)
.

This follows from the fact that the configuration with m replaced by −m in (5.18)
belongs to [L]P by the definition of P∼, and that the factor GτP,M (L) does not depend
on m. We then have the bound

Lemma 5.26 For every ε ∈ [0, 1], there exist constants c and C such that the
bound

|Jk,m(δ)| . e−c(m
2+(k+m)2)δ|k|ε(|m|+ |k +m|)1−ε ,

holds for all k,m ∈ Z? with |k| 6= |m| and for all δ > 0.
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Proof. Using the identity

ac+ bd =
1

2
((a+ b)(c+ d) + (a− b)(c− d)) ,

and the fact that |e−x − e−y| ≤ (1 ∧ |x− y|)e−(x∧y), we obtain the bound

|Jk,m| ≤ e−(k2+2m2−2|km|)|s−r|(2|k|+ |m|(1 ∧ 4|km||s− r|)) .

At this stage, we make use of the fact that supx>0 xe
−ax ≤ 1/a and that there exists

a constant c > 1
3 such that k2 + 2m2 − 2|km| > c(k2 +m2). This implies that

|s− r|e−(k2+2m2−2|km|)|s−r| .
e−

1
3

(k2+m2)|s−r|

k2 +m2
,

so that we conclude that the bound

|Jk,m| . e−c(m
2+(k+m)2)|s−r|

(
|k|+ |m|

(
1 ∧ |km|

k2 +m2

))
. e−c(m

2+(k+m)2)|s−r|(|k|+ |m|1−ε|k|ε) ,

holds for every ε ∈ [0, 1]. This bound is equivalent to the one in the statement.

For any L ∈ C?(G, E), denote now by SL: E → R the function given by
SLe = |Le| + |Le′ | if the two edges e and e′ are part of a loop of type 1, and
SLe = |Le| otherwise. The above considerations show that with this notation, there
exists a constant c > 0 such that one then has the bound

Fτsym(P,L; η) .
∫ (∏

e∈Ē

|SLe|−L0(e)e−c(SL)2e|δTe|
)
µη(dT ) (5.19)

.
∫

RḠ

(∏
e∈Ē

|SLe|−L0(e)e−c(SL)2e|δTe|
) ∏
u∈Ḡ

dTu ,

where L0 is the weighting constructed in Step 3. Here, the passage from the first
to the second line is trivial since the integrand is positive by construction, so that
integrating over a larger domain can only increase the value of the integral. (Here,
we use the convention that Tu = 0 or η respectively for u ∈ ē.)

To conclude the proof, we note that a repeated application of Hölder’s inequality
yields the bound ∫

R
exp
(
−

n∑
j=1

aj |x− xj |
)
.

m∏
j=1

a
−`j
j , (5.20)

for any a1, . . . , an ∈ R and any exponents `j > 0 with
∑n

j=1 `j = 1. We now fix
an arbitrary order on Ḡ and we apply (5.20) repeatedly, every time integrating over
the time variable associated to the corresponding element of Ḡ.
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Each such integration corresponds exactly to one iteration of Step 4 of the
construction of L ∈ G τ

κ . This shows that, for any of the weights L ∈ G τ
κ , one has

indeed the bound
Fτsym(P,L) ≤

∏
e∈Ē

|SLe|−L(e) .

Since |SLe| ≥ |Le| and since we only retain weights such that L(e) > 0 for e
belonging to a loop, the claim then follows.

5.5 On the summability of graphs
As a consequence of the results in the previous subsection, the construction of
Xτ is now reduced to verifying the existence of a summable graph in G τ

κ (P ) for
every pairing P ∈ Pτ . It is therefore useful to have a simple criterion to check the
summability of a graph. This is achieved by the following algorithm:

Algorithm 1 Apply the following operations successively, until the procedure sta-
bilises. Edges with weight 0 are removed and consecutive edges without intermedi-
ate branching point are merged:

α β ⇒ α+ β (5.21a)

0 ⇒ (5.21b)

Simple loops are erased, provided that their total weight is strictly greater than 1:

α ⇒ (5.22)

Small loops are “flattened”, provided that their weights α and β add to a value
strictly greater than 1:

α

β

⇒ γ (5.23)

with γ = α + β − 1 if α ∨ β < 1, γ = α ∧ β if α ∨ β > 1, and γ < α ∧ β if
α ∨ β = 1.

The main result of this subsection is then the following.

Proposition 5.27 Let (G, E ,L) be a weighted graph such that the application of
Algorithm 1 yields a loop-free graph. Then, (G, E ,L) is summable.

Proof. Since, for a loop-free graph, C (G, E) contains only one element (the one that
associates 0 to every edge), it suffices to check that for each step of the algorithm,
we can show that the original graph is summable, provided that the simplified graph
is summable.
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We define a function F : C (G, E)→ R by

F (C) =
∏
e∈E

(1 ∨ |Ce|)−Le , (5.24)

so that we want to verify the summability of F . Consider now one of the steps of
the algorithm and denote by (G, E ,L) the graph before the step and by (Ḡ, Ē , L̄)
the graph after the step. Similarly, we denote by F̄ the function associated as in
(5.24) to the weighted graph (Ḡ, Ē , L̄). Again, orientations do not matter, but it
is convenient to fix an orientation for the sake of definiteness. We will therefore
assume from now on that all the edges appearing in (5.21) and (5.23) are oriented
from left to right.

For each of the operations appearing in Algorithm 1, there is an obvious projec-
tion operator

Π: C (G, E)→ C (Ḡ, Ē) .

For those edges unaffected by the merging / erasing operation, we identify ΠC with
C in the obvious way. In the case of the merging operation (5.21a), if we denote
by f and f ′ the two edges being merged and by f̄ the resulting edge in Ē , we set
(ΠC)f̄ = Cf = Cf ′ . In the case of (5.21b) and (5.22) there is nothing to do since Ē
is identified with a subset of E . In the case (5.23), denoting by f , f ′ and f̄ the old
and new edges as before, we set (ΠC)f̄ = Cf +Cf ′ . (In all cases, the identification
is very natural if we think of elements in C (G, E) as describing flows on the graph.
It is also clear that ΠC then again describes a flow on the new graph.)

For the first two operations, the preservation of summability is now obvious,
since Π is a bijection and one has the identity

F̄ (ΠC) = F (C) .

For the operation (5.22), observe that, denoting the flow in the loop by k, one has
the identity ∑

C (G,E)

F (C) =
∑

C̄∈C (Ḡ,Ē)

F̄ (C̄)
∑
k∈Z

(1 ∨ |k|)−α .

Therefore, since α > 1 by assumption, it does follow that the summability of F
implies that of F̄ .

Finally, for the operation (5.23), denote by C0 the elementary cycle going
through the two edges that are being merged so that any two elements in Π−1C̄
differ by an integer multiple of C0. With this notation, one then has the identity∑

C (G,E)

F (C) =
∑

C̄∈C (Ḡ,Ē)

∑
C∈Π−1C̄

F (C)

=
∑

C̄∈C (Ḡ,Ē)

F̄ (C̄)
∑
k∈Z

(1 ∨ |C̄f̄ |)γ

(1 ∨ |k|)α(1 ∨ |C̄f̄ − k|)β
,
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where as before f̄ is the new edge replacing the loop. It is straightforward to check
that the conditions on α, β, and γ given below (5.21b) are precisely the conditions
guaranteeing that

sup
a∈Z

∑
k∈Z

(1 ∨ |a|)γ

(1 ∨ |k|)α(1 ∨ |a− k|)β
<∞ ,

so that the summability of F̄ does indeed imply that of F , thus concluding the proof.

Remark 5.28 It is clear from the proof that another allowed step would be to
decrease the weight of any edge. In particular, edges with positive weights can also
be contracted to a node. However, we will always consider weights in G τ

κ such that
this step is unnecessary.

One may legitimately ask whether the criterion given in Proposition 5.27 is
sharp. This is not known to the author and is probably not the case, even though
the author is not aware of any counterexample. An obvious necessary condition
for summability is that

∑
e∈C Le > 1 for every elementary cycle C ⊂ T , but it is

unfortunately easy to construct counterexamples showing that this naive condition
is not sufficient, even within the class of homogeneous graphs of degree 3. (Take
the tetrahedron and give each edge the same weight α ∈ (1

3 ,
1
2 ).)

Before we proceed, we summarise the results of the preceding subsections in
one convenient statement:

Proposition 5.29 Let τ be a binary tree with at least two interior vertices. Set
κ = 4− 2α and, for any pairing P ∈ P̄τ , denote by (E ,G) and G τ

κ (P ) the graph
and set of weightings constructed in Section 5.4. If, for a given P ∈ P̄τ , there exists
L ∈ G τ

κ (P ) such that the application of Algorithm 1 allows to contract the graph to
a point, then the bounds (5.13) do hold for Kτsym(P, ·; ·).

Proof. This is just a combination of Theorem 5.25 with Proposition 5.27.

5.6 Construction of X

Were are now in a position to apply the abstract result of the previous two subsections
to the construction of X . If we discard pairings such that L τ

P is empty (by
Remark 5.10, these are the pairings containing at least one of the two top pairs of
leaves), it can be checked by inspection that the remainder of P ∈ Pτ/(Sτ × Sτ )
for τ = consists of exactly three elements, which can be represented graphically
as follows:

, , . (5.25)
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Proposition 5.30 For every P ∈ P , the bounds (5.13) hold for Ksym(P, ·; ·) for
every α < 3

2 and every β < 1
2 .

As a consequence, there exists a process X with sample paths that are almost
surely continuous with values in Cα for every α < 3

2 . Furthermore, Xε → X in
probability in C([−T, T ], Cα) ∩ Cβ([−T, T ], C) for every β < 1

2 and every T > 0.

Proof. The second claim follows from Theorem 5.16, so that it suffices to check
that the bounds (5.13) hold for each of the pairings P depicted in (5.25). The first
pairing is treated by Proposition 5.18, noting that the required bounds on Ksym were
already obtained in the proof of Proposition 5.1.

The second pairing is treated by Proposition 5.29, noting that the following
element belongs to G τ

1+δ(P ) for every δ > 0:

2
3

2
3

2
3

2
3

1 + δ

−2
3

(5.26)

It is straightforward to verify that Algorithm 1 terminates and yields a loop-free
graph.

Unfortunately, the last remaining pairing does not seem to be covered by Propo-
sition 5.29, so we need to treat it “by hand”. A generic labelling for this pairing
looks like the following:

k

` m

t

s s

r r

t′

s′s′

r′r′

(5.27)

The kernel Kτ associated to (5.27) can then be written as

Kτ (P, L̂; t′ − t) = F(k, `,m)
∫

T τ
t

∫
T τ
t′

exp(−Ik,`,m(T, T ′))µt(dT )µt′(dT ′) ,

(5.28)
where the prefactor F is given by

F(k, `,m) = (k + `)(k +m)(k + `+m)2 ,

whereas the exponent I is given by I = I1 + I2 with

I1 = k2|r − r′|+ (k + `)2(s− r) + (k +m)2(s′ − r′) + `2|s′ − r|+m2|r′ − s| ,
I2 = (k + `+m)2(t+ t′ − s− s′) .
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This time, we make use of Proposition A.8 in order to bound the integral of I1,
which yields the bound

∫ s

−∞

∫ s′

−∞
e−I1 dr′ dr .

e−(`2∧m2)|s−s′|

((k + `)2 + `2)((k +m)2 +m2)
.

As in the proof of Theorem 5.25, it follows from Lemma A.7 that, in order to verify
the assumptions of Theorem 5.16, it suffices to verify the summability of

Kk`m
def
=

|k + `||k +m|(k + `+m)1−2κ

((k + `)2 + `2)((k +m)2 +m2)((k + `+m)2 + (`2 ∧m2))
,

for every κ > 0. Since this expression is symmetric in (`,m), it suffices to check
summability over |`| > |m|, say. In this case, one has the bound

Kk`m .
1

(|k + `|+ |`|)(|k +m|+ |m|)(|k + `+m|+ |m|)1+2κ

≤ 1

|`||k +m|
κ
2 |m|1+κ

2 |k + `+m|1+κ
.

Since, for every κ > 0 and a ∈ Z?, one has the bound
∑

` 6∈{0,a}
1

|`||`−a|1+κ . 1
|a| , it

follows that ∑
`

Kk`m .
1

|m|1+κ
2 |k +m|1+κ

2

,

which is indeed summable in k and m for every κ > 0, and the claim follows.

5.7 Construction of X

Since the tree has many symmetries, the calculations for this tree turn out to
be easier than for the previous case, even though this is a larger tree. Discarding
pairings such that L τ

P is empty, it can again be checked by inspection that the
remainder of P ∈ Pτ/(Sτ × Sτ ) consists of the following three elements:

, , . (5.29)

We have the following result:

Proposition 5.31 There exists a process X with sample paths that are almost
surely continuous with values in Cα for every α < 2. Furthermore, Xε → X in
probability in C([−T, T ], Cα) ∩ Cβ([−T, T ], C) for every β < 1

2 and every T > 0.
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Proof. For the three pairings shown in (5.29), the algorithm of Section 5.4 allows
to verify that the following elements belongs to G τ

κ :

κ

2
3

2
3

2
3

2
3

1

1− 1
3

− 1
3

κ

1
2

1
2

1

1

1

0

0

0

κ

1
2

1
2

0

1

10

0

1

In each case, we go through the vertices in Step 2 by ordering them from left to
right and top to bottom. For each of these three elements, it is then straightforward
to verify that Algorithm 1 indeed yields a loop-free graph for every κ > 0.

5.8 Construction of X

This time, because of the lack of symmetry of , there are many more cases to
consider. Indeed, if we discard again those pairings such that L τ

P is empty, it can
be checked by inspection that the remainder of P ∈ Pτ/(Sτ × Sτ ) consists of 15
elements.

However, with the tools of the previous subsections at hand, it turns out to
be relatively straightforward to show that the following holds, where Ps is as in
Proposition 5.18.

Proposition 5.32 For every P ∈ P \ Ps and for every κ > 0, one has∑
L∈LP

|%(L)|−κFsym(P,L) <∞ .

Proof. We outline a systematic way of constructing an element in G τ
κ (P ) for each

pairing P . The spanning tree T underlying the graphs (G, E) associated to each
pairing is given by a row of five edges, which we represent as

κ

(5.30)

with the distinguished edge ē being the one with weight κ. The remaining pairings
now consist of all possible graphs built by adding edges to (5.30) in such a way that

• Every vertex is of degree exactly 3, which is a reflection of the fact that we
only consider binary trees.
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• There are no simple loops, i.e. loops of the kind (5.22), for otherwise one
would have L τ

P = ∅ by Remark 5.10.
• There is at least one edge other than ē connecting the left half of the graph to

the right half, for otherwise one would have L τ
P = ∅ by Lemma 5.9.

• There is no edge other than ē connecting the two vertices adjacent to ē, for
otherwise one would have P ∈ Pτs .

By inspection, one can then check that, modulo isometries, the set of all such graphs
consists of 12 elements. We first consider the following 10 elements:

(5.31)

Observe that, for each one of the graphs (G, E) appearing in this list, we have
distinguished a subset Ê ⊂ E of the edges by drawing it in boldface, and we have
drawn the distinguished edge ē as a dashed line.

For each pairing, the weighting represented by these pictures gives weight 1 to
edges in Ê and weight κ to ē. One should furthermore think of it as giving weight
0 to the remaining dotted edges. However, whenever a small loop (whatever its
type) followed by a dotted edge appears in one of these graphs, we weigh such a
configuration as follows:

−1
3

2
3

2
3

(5.32)

We see that applying one step of Algorithm 1 to such a configuration results in
two consecutive edges with weights −1

3 and 1
3 respectively. As a consequence, by
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applying one more step of the algorithm, such a configuration does indeed behave
for all practical purposes as if the loop was erased and all edges had weight 0. For
each of the weightings represented in the figure, it is then a straightforward task to
verify that, on the one hand they do belong to G τ

κ (P ) for every κ > 0 and, on the
other hand, that Algorithm 1 does indeed yield a loop-free graph. This is because,
in every single case, contracting the edges with weight 0 yields a graph with only
two vertices that are joined by a number of edges, where one edge has weight κ and
every other edge has weight 1.

The two remaining pairings require a slightly different weighting:

κ
2

1− κ
2

In the first case, the two grey edges have weights κ
2 and 1− κ

2 respectively, whereas
the weights for all the other edges are as before. In the second case, the two
grey edges have weights −2

3 and 2
3 respectively, whereas the dotted edges all have

weights 2
3 .

Again, it can be checked in a straightforward way that in both cases, these
weights do indeed belong to G τ

κ (P ) and that Algorithm 1 yields a loop-free graph
in both cases.

It follows almost immediately that Xε converges to a limit taking “almost”
values in C

3
2 . More precisely,

Proposition 5.33 There exists a process X with sample paths that are almost
surely continuous with values in Cα for every α < 3

2 . Furthermore, Xε → X in
probability in C([0, T ], Cα) ∩ Cβ([0, T ], C) for every β < 1

2 .

Proof. It follows from Proposition 5.32 and Theorem 5.25 that the bound (5.13)
holds for every α < 2 and β < 1

2 , provided that P ∈ P \ Ps .
In view of Theorem 5.16, it thus suffices to show that a similar bound, but this

time with α < 3
2 , holds for P ∈ Ps . By Proposition 5.18, these pairings can be

reduced to the study of the tree . Applying Proposition 5.30 then concludes the
proof.

6 Treatment of the constant Fourier mode

So far, we were concerned with the construction of the processes Xτ defined as the
limits of the processes Xτ

ε from (2.1). However, in order to define solutions to the
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original problem, we would really like to build a sequence of processes Y τ given
by the limit as ε→ 0 of Y τ

ε defined recursively by

∂tY
τ
ε = ∂2

xY
τ
ε + ∂xY

τ1
ε ∂xY

τ2
ε − Cτε , (6.1)

for τ = [τ1, τ2] and for constants Cτε as in (2.4). Here, we start the recursion by
setting Yε (t, x) = Xε(t, x) +

√
2B(t), for B a standard Brownian motion which is

a solution to the additive stochastic heat equation.
Since only spatial derivatives appear in the right hand side of the recursion

relation (6.1), we see that Π⊥0 Y
τ
ε = Xτ

ε , so that it only remains to show that the
constant Fourier modes of Y τ

ε converge to a limiting real-valued stochastic process.
The proof goes in two steps. In a first step, we define a family of constants Kτ

ε for
τ = [τ1, τ2] by

Kτ
ε =

∑
k∈Z?

EX̄τ1
ε,k X̄

τ2
ε,−k ,

and we show that the following convergence result holds.

Proposition 6.1 For every τ ∈ { , , , }, there exists a constant K̄τ independent
of the mollifier ϕ such that

lim
ε→0

(Cτε −Kτ
ε ) = K̄τ .

Proof. See Lemmas 6.3–6.5 below, noting that one hasK = 0 so that the statement
is trivial for τ = .

Once this is established we see that, in order to establish convergence of the
processes Y τ

ε in (6.1), it is sufficient to establish it with Cτε replaced by Kτ
ε . With

this in mind, we define processes F τε by

F τε (t) =

∫ t

0

∑
k∈Z?

X̄τ1
ε,k(s) X̄τ2

ε,−k(s) ds−Kτ
ε t . (6.2)

Since F τε = Π0Y
τ
ε + (Cτε −Kτ

ε ), the convergence of the processes Y τ
ε to a limit

is now equivalent to the convergence of F τε to a limit process F τ . This in turn is
ensured by the following result.

Proposition 6.2 For every τ ∈ { , , , }, there exists a process F τ such that
F τε → F τ in probability. Furthermore, for every δ > 0, one has F ∈ C

3
4
−δ, and

F τ ∈ C1−δ for every τ ∈ { , , }.

Proof. See Lemmas 6.6 and 6.10 below.
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6.1 Convergence of the renormalisation constants

In this section, we show that one does indeed have Kτ
ε − Cτε → Kτ as ε→ 0, for

some constants Kτ that do not depend on the choice of mollifier ϕ. The simplest
case is when τ = , which is covered by the following lemma.

Lemma 6.3 The identity

Kε ≈ Cε + 1 =
1

ε

∫
ϕ2(x) dx+ 1 ,

holds up to an error of order O(ε).

Proof. By definition, we have the identity

Kε =
∑
k∈Z?

ϕ2(kε) =
∑
k∈Z

ϕ2(kε)− 1 .

It now suffices to note that ε
∑

k ϕ
2(kε) is a Riemann sum approximation to the

integral
∫
ϕ2(x) dx. Since, on the whole of R, this approximation agrees with the

trapezoidal rule, it is of second order, so that the claim follows.

For τ = on the other hand, it is much more difficult to get a handle on the
corresponding constants. In principle, the precise value of Kε does not really
matter, since the important fact is only that Kε + 4Kε is approximately constant
as ε → 0, but since it is possible to actually compute this constant, we state the
result and sketch its proof.

Lemma 6.4 Let ψ(x) = ϕ(x)ϕ′(x). Then, there exists a constant K independent
of ϕ such that one has the identity

Kε ≈
4π√

3
| log ε| − 8

∫
R+

∫
R

xψ(y)ϕ2(y − x) log y
x2 − xy + y2

dx dy +K ,

up to an error of order O(
√
ε log ε).

Proof. In the proof, we will denote by K a generic constant independent of ϕ. We
will not keep track of the precise value of K, so that it may change without warning
from expression to expression.

Following the definition of Xε and using the correlation function of X̄ε, it is
tedious but straightforward to check that for k 6= 0, one has the identity

E|X̄ε,k|2 =
∑

m6∈{0,k}

ϕ2(εm)ϕ2(ε(k −m))
k2 +m2 − km

.
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(Here, we used again the shorthand X̄τ = ∂xX
τ .) Using the fact that the summand

is symmetric under the substitution (k,m)↔ (−k,−m) and treating separately the
terms m ∈ {0, k}, we thus obtain

Kε =
∑
k∈Z

E|X̄ε,k|2 = 2
∑
k≥1

∑
m∈Z

ϕ2(εm)ϕ2(ε(k −m))
k2 − km+m2

− 4
∑
k≥1

ϕ2(εk)
k2

. (6.3)

Since the second term differs from 2π2/3 only by an error of order O(ε), we focus
on the first term. Note now that for k large, we can interpret the inner sum as a
Riemann sum so that, setting δ = 1

k , we have∑
m∈Z

ϕ2(εm)ϕ2(ε(k −m))
k2 − km+m2

=
δ

k

∑
m∈Z

ϕ2(εk δm)ϕ2(εk(1− δm))
1− δm+ (δm)2

=
1

k

∫
R

ϕ2(εk x)ϕ2(εk(1− x))
1− x+ x2

dx+
Gδ
k

+O(ε2 ∧ k−2)

def
= Cε(k) +

Gδ
k

+O(ε2 ∧ k−2) ,

Where Gδ is the error in the Riemann sum approximation:

Gδ =
∑
m∈Z

δ

1− δm+ (δm)2
−
∫

R

dx

1− x+ x2
.

Since Gδ = O(δ) for δ � 1, the term G(δ)/k is summable, so that

Kε = 2
∑
k≥1

Cε(k) +K +O(ε) .

At this stage, we note that one has∫
R

dx

1− x+ x2
=

2π√
3

,

from which it follows immediately that

Cε(k) =
2π√
3k

+O(ε) , (6.4)

where the error is O(ε), uniformly in k.
We now break the sum over Cε(k) into two parts. We first obtain from (6.4) that

2

1/
√
ε∑

k=1

Cε(k) =
2π√

3
| log ε|+ 4πγ√

3
+O(

√
ε) ,

where γ is the Euler-Mascheroni constant. For the remaining terms, we first note
that Cε(k) = 0 for k > 4/ε because of the properties of ϕ. We then write y = εk
and we approximate the sum over k by an integral:

2

4/ε∑
k=1/

√
ε

Cε(k) = 2

∫ 4

√
ε

∫
R

ϕ2(yx)ϕ2(y(1− x))
y(1− x+ x2)

dx dy +O(
√
ε) .
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Note that the error is of order
√
ε because, for fixed x ∈ R, the variation of the

integrand in y is of order 1/
√
ε. Integrating by parts over y, we see that this is equal

to

2π√
3
| log ε|+O(

√
ε log ε)

− 4

∫
R+

∫
R

(xψ(yx)ϕ2(y(1− x)) + (1− x)ψ(y(1− x))ϕ2(yx)) log y
1− x+ x2

dx dy .

The claim now follows from the symmetry of the integrand under the substitution
x 7→ 1− x and by performing the change of variables yx 7→ x.

Finally, we show that Kε can indeed be expressed in terms of Kε .

Lemma 6.5 One has 4Kε = −Kε − π2

3 +O(ε).

Proof. By definition, one has the identity

Xε,k(t) =
∑
`∈Z

∫ t

−∞
e−k

2(t−s)X̄ε,`(s)X̄ε,k−`(s) ds ,

so that

Kε = −
∑
k∈Z

∑
`∈Z

k`

∫ t

−∞
e−k

2(t−s)Xε,`(s)X̄ε,k−`(s)X̄ε,−k(t) ds . (6.5)

To estimate this quantity, the following calculation is helpful. For s > 0 and
k, ` ∈ Z, set

Hk,`(s) = EXε,`(0)X̄ε,k−`(0)X̄ε,−k(s) .

For k, ` 6= 0 with k 6= `, one then has the identity

Hk,`(s) =
∑
m∈Z

∫ 0

−∞
e`

2rE(X̄ε,`−m(r)X̄ε,m(r)X̄ε,k−`(0)X̄ε,−k(s)) dr .

One can check that the only non-vanishing terms in this sum are those with m =
`− k and with m = k, which yields

Hk,`(s) = 2ϕ2(εk)ϕ2(ε(k − `))
∫ 0

−∞
e`

2r+(k−`)2r−k2(s−r) dr

=
ϕ2(εk)ϕ2(ε(k − `))

`2 + k2 − k`
e−k

2s .

Inserting this expression into (6.5), it follows that one has the identity

Kε = −
∑
k∈Z?

∑
6̀=k

`ϕ2(εk)ϕ2(ε(k − `))
2k(`2 + k2 − k`)

,
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which, by performing the substitution ` = k −m, we can rewrite as

Kε = −
∑

k,m∈Z?

(k −m)ϕ2(εk)ϕ2(εm)
2k(k2 +m2 − km)

.

Performing a similar substitution in (6.3), we obtain

Kε =
∑

k,m∈Z?

ϕ2(εk)ϕ2(εm)
k2 +m2 − km

−
∑
k∈Z?

ϕ2(εk)
k2

,

so that we have the identity

Kε + 4Kε =
∑

k,m∈Z?

2m− k
k

ϕ2(εk)ϕ2(εm)
k2 +m2 − km

− π2

3
+O(ε) def

= Iε −
π2

3
+O(ε) .

At this stage, we note that, apart from the prefactor (2m − k)/k, the summand
is symmetric under the substitution (k,m) ↔ (m, k). As a consequence, we can
rewrite this sum as

Iε =
1

2

∑
k,m∈Z?

(2m− k
k

+
2k −m
m

) ϕ2(εk)ϕ2(εm)
k2 +m2 − km

. (6.6)

Since one furthermore has the identity

2m− k
k

+
2k −m
m

=
2(m2 + k2 − km)

km
,

the quantity in (6.6) is equal to (
∑

k∈Z?
ϕ(kε)
k )2. This vanishes identically since ϕ is

even, thus concluding the proof.

6.2 Convergence of the fluctuation processes
In this section, we show that the processes F τε defined in (6.2) have limits as ε→ 0.
We start with the process F :

Proposition 6.6 There exists a limiting process F such that Fε → F in proba-
bility in Cα for every α < 3

4 .

Proof. From the definition of Fε and the expression for the correlation functions
of X̄ε, it is straightforward to see that

E|Fε (t)− Fε (s)|2 =
∑
k∈Z?

ϕ4(kε)
∫ t

s

∫ t

s
e−k

2|r−r′| dr dr′

.
∑
k∈Z?

∫ t

s

∫ r′

s

1

|k|2α|r − r′|α
dr dr′

.
∫ t

s
|s− r′|1−α dr′ . |t− s|2−α ,

provided that α > 1
2 . The fact that the sequence is actually Cauchy then follows in

the same way as in the proof of Proposition A.2 below.
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For the more complicated trees, a more systematic approach, very similar to the
previous two sections, is required. We note that for a general tree τ with τ = [τ1, τ2],
one has the identity

E|F τε (t)− F τε (s)|2 =
∑
k,`∈Z?

∫ t

s

∫ t

s

(
E(X̄τ1

ε,k(r)X̄τ2
ε,−k(r)X̄τ1

ε,`(r
′)X̄τ2

ε,−`(r
′))

− E(X̄τ1
ε,k(r)X̄τ2

ε,−k(r)) E(X̄τ1
ε,`(r

′)X̄τ2
ε,−`(r

′)
)
dr dr′ . (6.7)

The reason why we can rewrite it in this way is that, by definition,

Kτ
ε =

∑
`∈Z?

E(X̄τ1
ε,`(r)X̄τ2

ε,−`(r)) ,

which is independent of r by the stationarity of the processes Xτ
ε .

As before, we can write this expectation as a sum over pairings of the tree τ and
all cycles of the corresponding graph. Previously, we always restricted ourselves
to cycles in C?(G, E) ∼ L τ

P , which was defined as consisting of those cycles that
associate a non-zero value to every edge. This time however, we are precisely
interested in only those cycles that do associate the value 0 to the distinguished edge
ē. We therefore denote by L τ

P ;0 the set of all cycles that associate the label 0 to the
distinguished edge ē but not to any other edge.

Remark 6.7 For the pairing associated to the graph depicted in (5.26), the set L τ
P ;0

is empty. Indeed, any cycle giving the value 0 to the horizontal edge at the bottom of
the graph also necessarily gives the value 0 to the horizontal edge at the top, but this
is not allowed. In general, all pairings yielding graphs with a small loop touching ē
are ruled out in this way.

In principle, the consequence of this is that we have to consider a potentially
larger set of pairings than what we did in in Section 5. Recall indeed Lemma 5.11,
which characterised the pairings yielding a non-empty set L τ

P as those pairings
which contain at least one element connecting the two copies of τ . (Denote these
pairings by P̂τ .) While the pairings that do not contain any such connection yield
an empty set L τ

P , they would certainly not yield an empty set L τ
P ;0. In fact,

pairings P ∈ Pτ \ P̂τ are precisely those with the property that every cycle of
the corresponding graph belongs to L τ

P ;0! Fortunately, we see that the pairings in
P ∈ Pτ \ P̂τ are precisely those that appear in the second line of (6.7), so that their
contribution to (6.7) vanishes. As a consequence, we still have the identity

E|F τε (t)− F τε (s)|2 =
∑
P∈P̂τ

∑
L∈L τ

P ;0

Cε(L)
∫ t

s

∫ t

s
Fτsym(P,L; r − r′) dr dr′ ,

where Fτsym is defined exactly as in Section 5.2 and where

Cε(L) =
∏
e∈T

ϕ2(εLe) .
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With this notation, we have the following result, which is the counterpart in this
context to Theorem 5.16:

Proposition 6.8 Let τ be a non-trivial binary tree and assume that there exists
α > 0 such that∣∣∣∫ t

s

∫ t

s
Fτsym(P,L; r − r′) dr dr′

∣∣∣ ≤ |t− s|2αFα(P,L) , (6.8)

for some constants Fα(P,L) and every s < t with |t− s| ≤ 1. Then, if∑
P∈P̂τ

∑
L∈L τ

P ;0

Fα(P,L) <∞ ,

there exists a process F τ such that F τε → F τ in probability in Cᾱ for every ᾱ < α.

Proof. Using Kolmogorov’s continuity criterion, the proof is virtually identical to
that of Proposition A.2.

It thus remains to provide a criterion for the summability of Fα(P,L) (which
we can define as the smallest constant such that (6.8) holds) for a given pairing P .
For this, we proceed similarly to Section 5 but our construction is slightly different.
Given a pairing P ∈ P̂τ and given κ > 0, we now construct a graph (Ĝ, Ê) and a
set of weights G τ

κ (P ; 0) by following the same procedure as in Section 5.4. There
are only two differences: first, instead of settingW(v) = 0 for v ∈ ē in Step 4, we
actually setW(v) = κ for these two vertices. Then, at the end of the algorithm,
we erase the edge ē, so that the graph (Ĝ, Ê) that we consider is actually given by
Ĝ = G and Ê = E \ {ē}.

We then have the following result:

Proposition 6.9 For a given P ∈ P̂τ , let G τ
κ (P ; 0) and (Ĝ, Ê) be as above. If there

exists κ < 2 such that there exists a summable element in G τ
κ (P ; 0), then∑

L∈L τ
P ;0

Fα(P,L) <∞ ,

for α = 1− κ
2 .

Proof. The proof is virtually identical to that of Theorem 5.25, so we only focus on
those steps that actually differ. Note first that the reason for erasing the edge ē after
the last step is that the set of cycles of (G, E) that give the value 0 to ē and non-zero
values to all other edges are, by definition, in a one-to-one correspondence with all
cycles of (Ĝ, Ê) that give non-zero values to all edges in Ê .

This immediately yields the claim for the case κ = 0 since in that case the proof
of Theorem 5.25 implies that∑

L∈L τ
P ;0

sup
δ∈R
|Fτsym(P,L; δ)| <∞ ,
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so that we do indeed have the required bound with α = 1. If κ > 0, we use the fact
that we only need a bound on the integrated quantity∫ t

s

∫ t

s
Fτsym(P,L; r − r′) dr dr′ .

As a consequence, in the last step of the proof of Theorem 5.25, we should replace
(5.19) by the bound∣∣∣∫ t

s

∫ t

s
Fτsym(P,L; r − r′) dr dr′

∣∣∣
.
∫ t

s

∫ t

s

∫
RḠ

(∏
e∈Ê

|SLe|−L0(e)e−c(SL)2e|δTe|
)(∏

u∈Ḡ

dTu

)
dTv dTv̄ ,

where we denote by v and v̄ the two vertices adjacent to ē. One then proceeds in
exactly the same way, but noting that for a > 0 one has the inequality∫ t

s
e−a

2|u−x| dx ≤ |t− s|α|a|2−2α =
|t− s|α

|a|κ
,

uniformly in u, provided that α = 1− κ
2 as in the statement of the proposition. The

claim then follows by repeatedly applying Hölder’s inequality, just like in the proof
of Theorem 5.25.

We now have the required tool to construct the remaining processes F τ . We
have:

Proposition 6.10 For every τ ∈ { , , }, there exists a limiting process F τ such
that F τε → F τ in probability in Cα for every α < 1.

Proof. By Propositions 6.8 and 6.9, it suffices to exhibit an element in G τ
κ (P ; 0) for

every pairing P ∈ P̂τ . In the case of τ = , there are only two such pairings that
yield a non-empty set L τ

P ;0:

(Note that we display the graphs (Ĝ, Ê) for which the edge ē has been removed, this
is why the two root vertices now only have degree 2.) As before, dotted lines have
weight 0, dashed lines have weight κ, and plain lines have weight 1. Again, the loop
and its adjacent edge in the first graph have weights as in (5.32), so that after the
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application of Algorithm 1, it is indeed equivalent to having an edge with weight
0. It is easy to see that both of these graphs are summable for every κ > 0, thus
yielding the claim for τ = .

In the case τ = , we can even take κ = 0. Indeed, recalling that the summa-
bility of graphs improves by removing edges, we note that if the criterion of Propo-
sition 5.29 is satisfied for a given pairing P , then the assumption of Proposition 6.9
is satisfied with κ = 0.

In the case τ = , the only pairings for which we have not verified that the
criterion of Proposition 5.29 is satisfied are those for which there is a pairing
connecting the two roots. There are exactly three such pairings left (one for each
pairing of ). One can then check that the following weights do belong to G τ

κ (P ; 0)
with the same colour-coding conventions as before:

Again, it is straightforward to verify that they are all summable, thus concluding the
proof.

7 Fine control of the universal process

The purpose of this section is to show that, for each fixed t > 0, the process X̄ (t)
is controlled (in the sense of controlled rough paths) by the process Φ. Recall that,
by definition, X̄ is given by

X̄ (t) = ∂x

∫ t

−∞
Pt−s(X̄ (s) X̄ (s)) ds ,

where Pt denotes the heat semigroup. Recall furthermore that the process Φ can be
written as

Φ(t) = ∂x

∫ t

−∞
Pt−sX̄ (s) ds .

Comparing these two expressions, this suggests that X̄ (t) is controlled by Φ(t)
with “derivative process” given by X̄ (t). The aim of this section is to prove this
fact, which is a crucial ingredient of our proofs.

In order to prove this, we would like to show that, for every t > 0, it is possible
to build a rough path over the pair (X (t), X̄ (t)). This would then enable us to
apply the results from Section 4.1 to show that X̄ (t) is indeed controlled by Φ.
Actually, we will show slightly less, namely that the “rough path norm” for the
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pair (Xε(t), X̄ε (t)), with a suitably defined “area process” has uniformly bounded
moments as ε→ 0. It is clear from the proofs that one actually has convergence to
a limiting rough path, but the rigorous proof of his fact would be slightly tricky so
that we skip it since we do not really need it.

For this, we need to build the integral of X̄ (t) against X (t). More precisely,
we would like to obtain control, as ε→ 0, of the quantity∫ y

x
(X̄ε (t, z)− X̄ε (t, x))X̄ε(t, z) dz . (7.1)

Unfortunately, this turns out to be impossible: the above quantity diverges loga-
rithmically for any pair x and y! Fortunately, this divergence is not too difficult to
control: indeed it arises from an “infinite constant”, which we subtract. The quantity
that we will thus attempt to control is given by

Xε
t (x, y) def

=

∫ y

x
(X̄ε (t, z)− X̄ε (t, x))X̄ε(t, z) dz − y − x

2π

∫ 2π

0
X̄ε (t, z)X̄ε(t, z) dz

=

∫ y

x
(Π⊥0 (X̄ε (t)X̄ε(t))(z)− X̄ε (t, x)X̄ε(t, z)) dz . (7.2)

Using Fourier components, we have the identity

Xε
t (x, y) =

∑
k∈Z?

∑
m∈Z

∫ y

x
X̄ε,k−m(t)X̄ε,m(t)eikz(1− e−i(k−m)(z−x)) dz

−
∑
m∈Z

∫ y

x
X̄ε,−m(t)X̄ε,m(t)eim(z−x) dz . (7.3)

Note that, since Xε
t differs from (7.1) only by a term of the form (y − x)Kε(t) for

some processKε, it automatically satisfies the required consistency relation (3.1) for
every ε > 0, so that it is a perfectly valid area process for the pair (Xε(t), X̄ε (t)).

Remark 7.1 The logarithmic divergence arising in the construction of Xε
t is really

the same logarithmic divergence Cε arising in the construction of Y in the fol-
lowing sense. If, instead of (7.7) below, we considered the same expression with
p′ replaced by p (which is essentially the definition of Yε,t), then the difference
between the rough integral

∫
and the usual Riemann integral would precisely result

in a term that is constant in space and that kills the divergence in such a way that
the resulting expression converges.

Remark 7.2 In a somewhat vague sense, propositions 5.18 and 5.32 suggest that
X behaves “as if” it was composed of one part with regularity C

3
2
−β that is

independent of X and one dependent part with regularity C2−β . Indeed, the bound
of Proposition 5.32 would yield C2−β regularity for arbitrary β > 0 if it held for all
pairings P , while Proposition 5.18 precisely treats only those pairings that would
arise if X and X were independent.
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If we could really decompose X as the sum of two processes with these
properties, then we could make sense of the limit Xε

t → Xt in almost exactly
the same way as in [FV10a]. Unfortunately, while this argument is undoubtedly
appealing, it doesn’t seem obvious how to make it work in a direct way.

The main technical bound of this section is the following:

Proposition 7.3 For every κ̄ > 0, one has the bound

sup
ε∈(0,1]

sup
t∈R

E‖Xε
t‖21−2κ̄ <∞ . (7.4)

Proof. In view of the definition (7.9), this is the content of propositions 7.10 and
7.11 below.

Furthermore, it follows immediately from (3.10) that, for any smooth function
f and for every ε > 0, one has the identity∫

S1

f (z) X̄ε (t, z) dXε(t, z) =

∫
S1

f (z) Π⊥0 (X̄ε (t)X̄ε(t))(z) dz , (7.5)

where we used Xε
t as the “area process” required to give meaning to the rough

integral on the left hand side. Setting

Rε,t(x, y) = δX̄ε,t(x, y)− X̄ε,t(x) δΦε,t(x, y) ,

we then have the following consequence of Proposition 7.3, which is the main result
of this section:

Theorem 7.4 One has Rε → R in probability in C(R, C1−δ
2 ) for every δ > 0.

Proof. It is crucial to note that, with Xε
t given by (7.2), one has the identity

X̄ε,t = PtX̄ε,0 + (MX̄ε )t(x) , (7.6)

where we defineM as in Section 4.1 by

(Mv)t(x) =

∫ t

0

∫
S1

p′t−s(x− y) vs(y) dXε,s(y) ds , (7.7)

where v is a rough path controlled by X̄ε (in this case trivially with v′ = 1 and
no remainder) and where we use Xε to define the rough integral between the two
processes. The reason why (7.6) holds withM defined with a “rough integral” is
that, if we replace

∫
by
∫

in the definition ofM, then it follows from (7.5) that we
do not change the resulting expression since p′t−s integrates to 0.

We are now able to apply the results of Section 4.1 with Y = Xε, Z = X̄ε and
Y = Xε. Setting

K κ
ε,t

def
= (1 + ‖X̄ε,t‖ 1

2
−κ + ‖Xε,t‖ 1

2
−κ)2 + ‖Xε,t‖1−2κ ,
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it follows from Proposition 4.1 with κ = 1−δ
4 and κ̄ = κ that one has the bound

‖Rε,t‖1− δ
2
. t

3
8

(δ−1)‖X̄ε,t‖∞‖Φ0‖ 1+δ
4

+

∫ t

0
(t− s)

δ
4
−1−κK κ

ε,s ds

+

∫ t

0
(t− s)

δ−5
4
−κ

2 ‖Xε,s‖ 1
2
−κ ‖X̄ε,t − X̄ε,s‖∞ ds . (7.8)

Note now that since Xε, X̄ε and Xε are all random variables belonging to a finite
combination of Wiener chaoses of fixed order, it follows from propositions 7.3 and
5.30 that, for every p > 0, every κ ∈ (0, 1

4 ), and every time interval [a, b], one has
the bound

E
∫ b

a
(K κ

ε,s)
p ds <∞ ,

uniformly over ε ∈ (0, 1]. As a consequence, the second term in (7.8) is bounded
in probability, uniformly over bounded intervals, provided that we choose κ < δ
and that one chooses p sufficiently large. Similarly, the third term is bounded in
probability by Proposition 5.30. Since the first term is harmless (except at t = 0,
but it suffices to change the origin of time to deal with that), we have shown that,
for every T > 0, one has the bound

sup
ε∈(0,1]

E sup
t∈[−T,T ]

‖Rε,t‖1− δ
2
<∞ .

To show that one actually has convergence towards R , note first that convergence
in the supremum norm follows from propositions 5.30 and 5.33. Since one has the
interpolation inequality

‖R‖1−δ ≤ ‖R‖
2−2δ
2−δ

1− δ
2

‖R‖
δ

2−δ
∞ ,

the claim then follows.

The remainder of this section is devoted to the proof that the bound (7.4) does
indeed hold. We are going to exploit the translation invariance so that, for simplicity,
we use the shorthand notation

Xε
t (δ) def

= Xε
t (0, δ) .

Performing the integrals in (7.3), one obtains the identity

Xε
t (δ) =

∑
k,m∈Z?

X̄ε,k−m(t)X̄ε,m(t)
(eikδ − 1

k
− eimδ − 1

m

)
−
∑
m∈Z?

X̄ε,−m(t)X̄ε,m(t)
eimδ − 1

m
(7.9)

def
= X(1),ε

t (δ) + X(2),ε
t (δ) .



84 FINE CONTROL OF THE UNIVERSAL PROCESS

We first consider X(1)
t and postpone the bounds on X(2)

t to the end of this section.
In order to bound X(1)

t , we rewrite its second moment as

E(X(1),ε
t (δ))2 =

∑
k,m,m̄∈Z?

E(X̄ε,k−m(t)X̄ε,m(t)X̄ε,−k−m̄(t)X̄ε,m̄(t)) (7.10)

×
(eikδ − 1

k
− eimδ − 1

m

)(1− e−ikδ

k
− eim̄δ − 1

m̄

)
.

(In principle, one should have a k̄ appearing, but the expectation is non-zero only if
k̄ = −k, so that the sum of all indices appearing under the expectation vanishes.)
At this stage, it is useful to note that one has the identity

E(X̄ε,k−m(t)X̄ε,m(t)X̄ε,−k−m̄(t)X̄ε,m̄(t)) =
∑
P∈P

∑
L∈L τ

P ;k,m,m̄

Cε(L)F (P,L) ,

(7.11)
where, similarly to (5.17), we set

Fτ (P,C) =
(∏
e∈T̄

Ce

)∫
exp
(
−
∑
e∈Ē

|Ce|2|δTe|
)
µ0(dT ) ,

and where we denoted by L τ
P ;k,m,m̄ the set of all cycles in L τ

P such that the edge ē
has value k and such that the two edges in E \ T adjacent to ē have values m and
m̄ respectively. (By convention, we orient ē from the edge with label m to the one
with label m̄.)

Here, E and T are as before the set of edges and the spanning tree for the graph
associated to the tree and the pairing P in exactly the same way as in Section 5.4.
Also, just as in that section, Ē and T̄ denote the same sets, but with the distinguished
edge ē removed.

Remark 7.5 Since, at least at this stage, we fix the labels k, m and m̄, we cannot
necessarily replace Fτ by Fτsym. This will be the source of some minor headache
later on.

Inserting (7.11) into (7.10), we have the identity

E(X(1),ε
t (δ))2 =

∑
P∈P

Xε
P (δ) .

The quantity Xε
P appearing in this decomposition is defined by

Xε
P (δ) =

∑
k,m,m̄∈Z?

∑
L∈L τ

P ;k,m,m̄

Cε(L)F (P,L)(gk(δ)− gm(δ))(g−k(δ)− gm̄(δ)) ,

(7.12)
where we used the shorthand notation

gk(δ) def
=
eikδ − 1

k
.

We now proceed to bounding XP (δ) for each pairing P .
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Proposition 7.6 For every P ∈ Ps and every κ > 0, the bound

Xε
P (δ) . δ2−2κ , (7.13)

holds uniformly over ε, δ ∈ (0, 1].

Proof. It follows from Proposition A.3 below that one has the bound

|gk(δ)− gm(δ)| ≤ 2|k −m|δ2 .

Since one also has the trivial bound |gk(δ)| ≤ 2/|k|, it follows that one has for every
κ > 0 the bound

|gk(δ)− gm(δ)| . δ2−2κ|k −m|1−κ(|k|−1 + |m|−1)κ . (7.14)

Furthermore, by the definition of Ps, every P ∈ Ps is associated to a P̄ ∈ P
such that the remaining pair in P connects the two leaves attached to the roots.
Similarly, for every L ∈ LP ;k,m,m̄ there exists a cycle ΠL ∈ L

P̄
such that ΠL

agrees with L on the common parts of the two graphs and such that (ΠL)ē = k−m.
Furthermore, Π is a bijection between LP ;k,m,m̄ and the subset L

P̄ ;k−m of L
P̄

that we just mentioned.
We also note that if P ∈ Ps , one has LP ;k,m,m̄ = ∅ unless m̄ = −m, since

otherwise the cycles in that set are not adapted to the pairing P . As a consequence,
one has the identity∑

L∈L τ
P ;k,m,m̄

Cε(L)F (P,C)

= (k −m)2δm,−m̄
∑

L̄∈L
P̄ ;k−m

ϕ(ε(k −m))Cε(L̄)Ksym(P̄ , L̄; 0) .

Combining this with the bound (7.14) and summing the resulting expression over k
and m, we obtain, for every κ > 0 the bound

Xε
P (δ) . δ2−2κ

∑
L̄∈L

P̄

∑
m∈Z?
m 6=L̄ē

|L̄ē|3−κ|Ksym(P̄ , L̄; 0)|(|m+ L̄ē|−1−κ + |m|−1−κ) ,

(7.15)
uniformly over ε and δ. Since, by Proposition 5.30, the quantity

|L̄ē|3−κ|Ksym(P̄ , L̄; 0)| ,

is summable over L
P̄

, the second term in (7.15) satisfies the requested bound. The
claim now follows from the fact that the first term is essentially identical to the
second one, as can be seen by performing the substitution m 7→ m− L̄ē.
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We now proceed to bound the terms corresponding to the remaining pairings,
which we subdivide into three different classes. Recall that `P` (τ ) denotes the set of
leaves that are part of a small loop of type 1. Denote furthermore by u and ū the
two leaves that are attached to either of the roots of the two copies of . We then
define Pk( ) with k ∈ {0, 1, 2} as consisting of those pairings in P \ Ps such
that |{u, ū} ∩ `P` ( )| = k. We then have:

Proposition 7.7 For every P ∈ P0( ) and every κ > 0, there exists C such that
the bound (7.13) holds for ε ∈ (0, 1].

Proof. For such a pairing, one has the identity∑
L∈L τ

P ;k,m,m̄

Cε(L)Fτ (P,L) =
∑

L∈L τ
P ;k,m,m̄

Cε(L)Fτsym(P,L) ,

where as before we denote by Fτsym the symmetrised version of Fτ under the

equivalence relation P∼. (Here and below, we sometimes use τ instead of in order
to make notations slightly less heavy.) Indeed, if P ∈ P0( ) and L ∈ L τ

P ;k,m,m̄,

then L̄ ∈ L τ
P ;k,m,m̄ for every L̄ with L̄ P∼ L, since none of the loops whose labels

can change sign touches the distinguished edge ē.
Recall furthermore that |gk(δ)| ≤ δ so that, for every κ ∈ [0, 1], one has the

bound

δ2κ−2|(gk(δ)− gm(δ))(g−k(δ)− gm̄(δ))| . |k|−2κ + (|m|−2κ ∧ |m̄|−2κ)

. |k|−2κ + |m|−κ1 |m̄|−κ2 , (7.16)

where κ1 and κ2 are any two positive exponents with κ1 + κ2 = 2κ. Recalling the
definition of Xε

P , we see that the requested bound follows, provided that we are able
to show that, for every pairing P ∈ P0( ) and every κ > 0, one can find exponents
κ1 and κ2 as above such that∑

k,m,m̄∈Z?

∑
L∈L τ

P ;k,m,m̄

(|k|−2κ + |m|−κ1 |m̄|−κ2)|Fsym(P,L; 0)| <∞ .

It follows from Proposition 5.32 that∑
k,m,m̄∈Z?

∑
L∈L τ

P ;k,m,m̄

|k|−2κ|Fsym(P,L; 0)| <∞ , (7.17)

for every κ > 0, so that it remains to show that∑
k,m,m̄∈Z?

∑
L∈L τ

P ;k,m,m̄

|m|−κ1 |m̄|−κ2Fsym(P,L; 0) <∞ . (7.18)

For P ∈ P0( ) and κ > 0, we now define a set Ḡ τ,0
κ (P ) of weightings by

following the construction in Section 5.4. Comparing (7.18) and (7.17) we see that,
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in order to obtain a bound on (7.18), the only difference in the construction is that,
in Step 2, we give weight 0 to the distinguished edge ē, and weights κ1 and κ2 to
the two edges adjacent to ē that do not belong to the spanning tree T .

Retracing the proof of Theorem 5.25 we see that, if we can exhibit an element
in Ḡ τ,0

κ (P ) such that Algorithm 1 yields a loop-free graph, then the bound (7.18)
holds. It can be checked in a straightforward way that the following weightings do
indeed belong to Ḡ τ,0

κ (P ):

Here, we use again the same convention as in the proof of Proposition 5.32. The
only difference is that the dashed lines correspond to a weight 2κ if only one dashed
line is present in a given graph, and κ if two such lines are present. Again, it is
straightforward to verify that Algorithm 1 does indeed yield a loop-free graph for
every κ > 0 in each instance, thus proving the claim.

We now turn to the set P1 of pairings that have one small loop touching the
distinguished edge. There are actually only two such pairings (modulo isometries),
corresponding to the 8th and the 10th pairing in (5.31).

Proposition 7.8 For every P ∈ P1( ) and every κ > 0, the bound (7.13) holds
uniformly over ε, δ ∈ (0, 1].

Proof. By the definition of P1, there is one small loop touching the distinguished
edge. We can then fix our naming convention in such a way that the edge of this
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loop that doesn’t belong to the spanning tree T is the one labelled m. With this
convention, we then introduce a “reflection map” R: L τ

P ;k,m,m̄ → L τ
P ;k,−m,m̄,

which is the bijection which changes the sign of m and adjust the label of the other
edge of the small loop in such a way that no other label is changed. In other words,
if we decompose elements in L τ

P ;k,m,m̄ with respect to the integral basis associated
with the spanning tree T , thenR is the map that changes the sign of the coefficient
in front of the elementary cycle spanning the small loop.

With this notation, although we cannot quite replace Fτ by Fτsym in (7.12), we
nevertheless have the identity∑

L∈L τ
P ;k,m,m̄

(F (P,L) + F (P,RL)) = 2
∑

L∈L τ
P ;k,m,m̄

Fsym(P,L) ,

Using this identity, we can decompose (7.12) into a symmetric part and a
remainder, which yields the expression

Xε
P (δ) =

∑
k,m,m̄∈Z?

( ∑
L∈L τ

P ;k,m,m̄

Cε(L)Fsym(P,L; 0)
)
gk(δ)(g−k(δ)− gm̄(δ))

−
∑

k,m,m̄∈Z?

( ∑
L∈L τ

P ;k,m,m̄

Cε(L)F (P,L; 0)
)
gm(δ)(g−k(δ)− gm̄(δ)) .

The first term in this identity is bounded by∑
k,m,m̄∈Z?

∑
L∈L τ

P ;k,m,m̄

|Fsym(P,L; 0)| |k|−2κδ2−2κ ,

which in turn is bounded by Cδ2−2κ by Proposition 5.32.
Similarly, the second term is bounded by

δ2−2κ
∑

k,m,m̄∈Z?

∣∣∣ ∑
L∈L τ

P ;k,m,m̄

Cε(L)F (P,L; 0)
∣∣∣ |m|−2κ , (7.19)

which is not quite covered by Proposition 5.32 since the terms are weighted by a
power of m, the label of the edge within the small loop, instead of k, the label of
the distinguished edge.

Similarly to Proposition 7.7, we now define a set Ḡ τ,1
κ (P ) of weightings by

again following the construction in Section 5.4. This time, in Step 2, we give weight
0 to the distinguished edge ē, and we give instead an additional weight 2κ to the
edge in E \ T adjacent to ē that belongs to a small loop of type 1. Since the kernel
F is not symmetrised underR, another difference in the construction of Ḡ τ,1

κ (P ) is
that in Step 3, we do not treat the loop that touches ē.

Retracing once again the proof of Theorem 5.25 we see that, if we can exhibit an
element in Ḡ τ,1

κ (P ) such that Algorithm 1 yields a loop-free graph, then the quantity
(7.19) is bounded by Cδ2−2κ for some C <∞, which is the desired bound. Note
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now that, in the proof of Proposition 5.32, the weightings that are exhibited for
pairings in P1( ) locally look like

2κ −1
3

2
3

2
3

(7.20)

It is straightforward to check that under the rules for constructing Ḡ τ,1
κ (P ), these

configurations can instead be weighted in the following way:

0 −1
3

2
3

2
3 + 2κ

(7.21)

Since Algorithm 1 has the same effect on both of these configurations, at least if κ
is small enough (one can just replace them by one single edge with weight 2κ), the
summability of (7.19) follows in the same way as before.

Finally, we also have the bound

Proposition 7.9 For every P ∈ P2( ) and every κ > 0, the bound (7.13) holds
uniformly over ε, δ ∈ (0, 1].

Proof. The proof is virtually identical to that of Proposition 7.8, so we only highlight
the differences. We now have two small loops touching the distinguished edge,
so that the expression for Xε

P (δ) is broken into four terms, since each of the two
loops can either be symmetrised or not. Then, as before, the symmetrised loops
are associated to weightings as in the proof of Proposition 5.32, while the non-
symmetrised loops are associated to weightings as in (7.21).

Combining these results, we obtain the following result:

Proposition 7.10 For every κ̄ > 0, one has the bound

sup
ε∈(0,1]

sup
t∈R

E‖X(1),ε
t ‖21−κ̄ <∞ .

Proof. Since X(1),ε
t belongs to a finite union of fixed Wiener chaoses, it follows

from Propositions 7.6–7.9 that, for every κ > 0 and every p > 0, the bound

E|X(1),ε
t (x, y)|p . |x− y|p(1−κ) ,

holds uniformly in ε ∈ (0, 1], t ∈ R, and x, y ∈ S1. The requested bound then
follows from [Gub04, Cor. 4].
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We now consider the term X(2),ε
t (δ) which can be treated in a similar manner.

One has:

Proposition 7.11 The conclusions of Proposition 7.10 holds, with (1) replaced by
(2) throughout.

Proof. In the same way as before, it suffices to show that

E(X(2),ε
t (δ))2 . δ2−2κ ,

uniformly over ε, δ ∈ (0, 1]. In exactly the same way as before, we have the identity

E(X(2),ε
t (δ))2 =

∑
m,m̄∈Z?

E(X̄ε,−m(t)X̄ε,m(t)X̄ε,−m̄(t)X̄ε,m̄(t))gm(δ)gm̄(δ) ,

(7.22)
with

E(X̄ε,−m(t)X̄ε,m(t)X̄ε,−m̄(t)X̄ε,m̄(t)) =
∑
P∈Pτ

∑
L∈L τ

P ;m,m̄

Cε(L)Fτ (P,L) . (7.23)

Here, by analogy with the previous notations of this section, we denoted by L τ
P ;m,m̄

the set of all cycles in L τ
P ;0 such that the edge ē (and only that edge) has value 0

and the edges in E \ T adjacent to ē have values m and m̄ respectively.
Similarly to before, for any given κ ∈ (0, 1

2 ], and for any two positive ex-
ponents κ1 and κ2 with κ1 + κ2 = 2κ, we have the bound |gm(δ)gm̄(δ)| ≤
δ2−2κ|m|−κ1 |m̄|−κ2 , so that the statement reduces to the proof that∑

m,m̄∈Z?

( ∑
L∈L τ

P ;m,m̄

Cε(L)Fτ (P,L)
)
|m|−κ1 |m̄|−κ2 <∞ , (7.24)

uniformly over ε ∈ (0, 1].
The proof follows again the same lines as before. For every pairing P ∈ P ,

we construct a set Ĝ τ
κ (P ) of weightings by following the construction in Section 5.4.

Again, we give ē the weight 0, and weigh instead the two edges in E \ T adjacent to
ē by κ1 and κ2 respectively. Note that, since the inner sum in (7.24) has m and m̄
fixed, we cannot symmetrise small loops that touch the distinguished edge. As a
consequence, in Step 3 of the construction, we only treat those small loops that do
not touch ē. This however is not a problem, since the loops touching ē receive an
additional weight κi anyway, which has the same effect. Furthermore, since this
time we restrict our sum to cycles that associate to ē the value 0, we remove the
edge ē from the graph (G, E) before applying Algorithm 1.

Retracing the proof of Theorem 5.25 we see once again that if, for every pairing
P ∈ Pτ , we can exhibit an element in Ĝ τ

κ (P ) such that Algorithm 1 yields a loop-
free graph, then the requested bound holds. On the other hand, as far as the outcome
of Algorithm 1 is concerned, deleting an edge (not contracting it!) is the same as
giving it a weight larger than the largest weight in the graph. As a consequence,
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every weighting constructed in Propositions 7.7–7.9 also yields a weighting in
Ĝ τ
κ (P ) that is summable. Furthermore, pairings in Pτs can be treated “by hand” in

very much the same way as in Proposition 7.6.
There still remains one case to verify though. Previously, we only considered

pairings such that there exists at least one pair connecting the two instances of the
tree τ . This was precisely because any labelling compatible with a pairing that
doesn’t have this property would associate 0 to the root vertex, which we always
ruled out. This time however, this is precisely the situation that we are considering,
so that we cannot make this restriction. As a consequence, we also have to consider
the following pairing:

(7.25)

Here, as before, the two dashed edges have weight κ, while the loops and the remain-
ing edges are weighted in such a way that, after applying one step of Algorithm 1,
they reduce to an edge with weight 1. This weighted graph is summable by applying
Algorithm 1, which then concludes the proof in the same way as in Proposition 7.10.

Remark 7.12 The last step is the only step in the proof of Proposition 7.11 where
the additional weight κ is actually needed. In all other cases, erasing ē significantly
improves the summability properties of the resulting graphs, so that the resulting
expressions would already have been summable with gm(δ) = δ. This shows that it
is precisely the presence of the graph (7.25) that requires the projection operator
Π0 in the definition (7.2). Indeed, if we remove Π0 from this expression, we see
that the difference results in a term like (7.22), but with gm(δ) = δ, so that this last
pairing would result in a logarithmic divergence.

7.1 Construction of the area process

To conclude the construction of the map Ψ, we show that the sequence of processes
Yε defined by (2.16) does indeed have a limit as ε→ 0:

Proposition 7.13 Let Φε, Yε and Yε be given by (2.13) and (2.16). Then, there
exists a process Y such that Yε → Y in probability in the space C(R, C1−δ

2 ) for
every δ > 0.

Proof. The argument is essentially the same as the one given in [Hai11], which in
turn relies very heavily on the results in [FV10a, FV10b], so we only explain the
main steps and refer to [Hai11] for more details.
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Recall that, by definition, the Fourier components of Yε (for k 6= 0) are given
by

Yε,k(t) =
√

2ϕ(kε)
∫ t

−∞
e−k

2(t−s) dWk(s) ,

where the Wk are independent normal complex-valued Wiener processes satisfying
the reality condition W−k,t = W̄k,t. Similarly, the Fourier components of Φε are
given by

Φε,k(t) = k2

∫ t

−∞
e−k

2(t−s)Yk,s ds =
√

2ϕ(kε)
∫ t

−∞
k2(t− s) e−k2(t−s)dWk(s) .

An explicit calculation (boiling down to the fact that
∫∞

0 (x− 1
2 )e−2x dx = 0)

then shows that if we define a process Φ̃ε by

Φε =
1

2
Yε + Φ̃ε ,

then, for every fixed t ∈ R, the processes Φ̃ε(t) and Yε (t) are independent. It then
follows from [FV10b] that Yε(t) → Y(t) in probability in C1−δ

2 for every δ > 0.
The convergence in C([−T, T ], C1−δ

2 ) then follows from Kolmogorov’s continuity
criterion by [FV10a, Theorem 1].

We now finally have all the ingredients in place for the proof of Theorem 2.3.

Proof of Theorem 2.3. The case τ = • is standard, see for example [DPZ92]. The
cases τ ∈ { , , , } follow by combining the results of Section 5, which yield the
convergence of the processes Xτ , with the results of Section 6, which furthermore
yield the convergence of the constant Fourier modes of Y τ .

The remaining cases are treated by induction. Assume that τ = [τ1, τ2] with
ατ1 ≤ ατ2 . The case τ1 = • will be treated separately. If τ1 6= •, then we have
ατ1 ≥ 1 and ατ2 > 1 (since the case of both being equal to 1 corresponds to the
tree which was already covered). As a consequence, we can use the induction
hypothesis, combined with Proposition A.9 to conclude that the term ∂xY

τ1
ε ∂xY

τ2
ε

converges to ∂xY τ1 ∂xY
τ2 in C(R, Cατ−2−δ) for every δ > 0. The claim then

follows from the definition of Y τ , combined with Proposition A.11.
It remains to treat the case when τ = [•, τ̄ ] with ατ̄ > 1. For these, we actually

show a stronger statement, namely that, ∂xY τ
ε → ∂xY

τ as a rough path controlled
by Φε with derivative process ∂xY τ̄

ε . By the results of this section, this is true for
τ = , so that it suffices to prove the statement for the remaining trees of this form.
Again, there are two cases. If ατ̄ ≥ 1, we view ∂xY

τ̄
ε as a rough path controlled

by Φε with vanishing derivative process, so that Proposition 4.1 yields the desired
statement. If τ̄ is itself of the form τ̄ = [•, κ], then we know by the induction
hypothesis that ∂xY τ̄

ε is controlled by Φε with derivative process ∂xY κ
ε and bounds

that are uniform in ε. The claim then follows again from Proposition 4.1.
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Appendix A Useful computations

A.1 Wiener chaos
In this section, we assume that we work on a probability space (Ω,P,F) equipped
with a Gaussian structure. In other words, there exists a separable Hilbert space
H and an isometry ι:H → L2(Ω,P) such that ι(h) is a centred Gaussian random
variable for every h ∈ H.

Denote now by Pk,m the set of all polynomials of degree k in m variables. We
then write Ik for the closure in L2(Ω,P) of the set

{P (ι(h1), . . . , ι(hm)) : P ∈ Pk,m , hj ∈ H , m ≥ 1} .

Given a separable Banach space B, we also write Ik(B) for the same space, but
where P is B-valued. The space Ik is the union of the nth Wiener chaoses for Ω with
n ≤ k. Since the precise definition of the nth Wiener chaos over a given Gaussian
structure is only marginally relevant for this article, we refer to the monograph
[Nua95] for more details.

A very useful fact is given by the following lemma, which follows from the
hypercontractivity of the Ornstein-Uhlenbeck semigroup on L2(Ω) [Nua95] and is
also known as Nelson’s estimate:

Lemma A.1 Let (Ω,P,F) be a Gaussian probability space, let B be a separable
Banach space, and denote Ik(B) as before. Then, for every k, p ≥ 1 there exist
constants Ck,p such that

E|F |2p ≤ Ck,p(E|F |2)p ,

for every every B-valued random variable F ∈ Ik(B).

Our main application of this estimate is the following bound, which loosely
speaking states that in the context of processes taking values in a fixed Wiener chaos,
Sobolev regularity for a given index often implies Hölder regularity for the same
index.

Proposition A.2 Let J be a countable index set, let T > 0, and let {gκ}κ∈J be
a family of Lipschitz continuous functions such that.

‖gκ‖∞ ≤ 1 , ‖gκ‖1 ≤ Gκ ,

for some Gκ ≥ 1. In general, we assume that the gκ are complex-valued and that
there is an involution ι: J →J such that gικ = ḡκ.

Let furthermore {fκ}κ∈J be a family of continuous stochastic processes be-
longing to Ik for some fixed value k ∈ N, and write

Fκη(t) = Efκ(t)fη(t) , F̂κη(s, t) = E(fκ(t)− fκ(s))(fη(t)− fη(s)) .

We also assume that fικ = f̄κ. Finally, let {Cε}ε∈(0,1] be a family of functions
Cε: J → [0, 1] such that
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• one has Cε(κ) > Cε̄(κ) for ε < ε̄,

• for every ε > 0, the set {κ : Cε(κ) 6= 0} is finite,

• for every κ ∈J , one has limε→0Cε(κ) = 1.

For every ε > 0, let Fε be the stochastic process defined by

Fε(x, t) =
∑
κ∈J

Cε(κ)fκ(t)gκ(x) , (A.1)

and assume that there exists α ∈ (0, 1) and β ≥ 0 such that∑
κ,η∈J

sup
t∈[0,T ]

|Gκ|α|Gη|α|Fκη(t)| <∞ ,

∑
κ,η∈J

sup
s,t∈[0,T ]

|F̂κη(s, t)|
|t− s|2β

<∞ ,
(A.2)

Then, for every γ < α and δ < β, there exists a process F taking values in
Bγ,δ

def
= C([0, T ], Cγ) ∩ Cδ([0, T ], C) and such that Fε → F in L2(Ω,P,Bγ,δ).

Proof. It suffices to show that our conditions imply that the sequence {Fε} is
Cauchy in L2(Ω,P,Bγ,δ). Fix 0 < ε < ε̄ and write C ε̄ε (κ) as a shorthand for
Cε(κ)− Cε̄(κ), and similarly F ε̄ε = Fε − Fε̄. By our assumption on Cε, we have
C ε̄ε (κ) ≥ 0 for every κ.

We furthermore write

Fκη
def
= sup

t∈[0,T ]
|Fκη(t)| , F̂κη

def
= sup

s,t∈[0,T ]

|F̂κη(s, t)|
|t− s|2β

.

An elementary calculation then shows that

E|F ε̄ε (x, t)|2 =
∑

κ,η∈J

C ε̄ε (κ)C ε̄ε (η)Efκ(t)f̄η(t)gκ(x)ḡη(x)

=
∑

κ,η∈J

C ε̄ε (κ)C ε̄ε (η)Efκ(t)fιη(t)gκ(x)gιη(x)

=
∑

κ,η∈J

C ε̄ε (κ)C ε̄ε (ιη)Fκη(t)gκ(x)gη(x)

≤
∑

κ,η∈J

C ε̄ε (κ)C ε̄ε (ιη)Fκη .

Similarly, we have the bound

E|F ε̄ε (x, t)− F ε̄ε (y, t)|2 =
∑

κ,η∈J

C ε̄ε (κ)C ε̄ε (η)Fκη(t)(gκ(x)− gκ(y))(gη(x)− gη(y))

≤ |x− y|2α
∑

κ,η∈J

C ε̄ε (κ)C ε̄ε (η)Fκη|Gκ|α|Gη|α ,
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as well as

E|F ε̄ε (x, t)− F ε̄ε (x, s)|2 =
∑

κ,η∈J

C ε̄ε (κ)C ε̄ε (η)F̂κη(s, t)gκ(x)gη(x)

≤ |t− s|2β
∑

κ,η∈J

C ε̄ε (κ)C ε̄ε (η)|F̂κη| . (A.3)

Making use of Lebesgue’s dominated convergence theorem, we deduce that there
exists a sequence of constants Kε̄ with limε̄→0Kε̄ = 0 such that the bounds

E|F ε̄ε (x, t)−F ε̄ε (y, t)|2 ≤ Kε̄|x− y|2α , E|F ε̄ε (x, t)−F ε̄ε (x, s)|2 ≤ Kε̄|t− s|2β ,

hold uniformly for ε < ε̄. In particular, it follows from Lemma A.1 that bounds
with the same homogeneity also hold for the pth moment for arbitrarily large p.
It then follows from a straightforward modification of Kolmogorov’s continuity
criterion that

lim
ε̄→0

sup
ε<ε̄

E‖F ε̄ε ‖2γ,δ = 0 ,

where ‖ · ‖γ,δ is the norm in Bγ,δ. The claim now follows at once.

A.2 Bounds on simple integrals
In this section, we collect a number of elementary bounds on various integrals that
appear several times throughout the article. First, it will turn out to be useful to have
bounds on expressions of the type

bf (at)− af (bt)
b− a

,

with a, b, t in R+, where f : R+ → R is a smooth function.
We have the following:

Proposition A.3 For a, b, t, and f as above, one has the global bound∣∣∣bf (at)− af (bt)
b− a

− f (0)
∣∣∣ ≤ 2abt2 ‖f ′′‖∞ , (A.4)

where ‖ · ‖∞ denotes the supremum norm. If furthermore there exists a constant K
such that supy≥0 |f (y)− yf ′(y)| ≤ K, then∣∣∣bf (at)− af (bt)

b− a

∣∣∣ ≤ K , (A.5)

independently of a, b, and t.

Proof. We assume without loss of generality that b > a (otherwise, just reverse the
roles of a and b) and we set δ def

= b− a. One then has

bf (at)− af (bt)
b− a

= f (at)− a

δ
(f (bt)− f (at)) ,
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so that, writing |I| for the left hand side of (A.4),

I = at
(1

a

∫ a

0
f ′(st) ds− 1

δ

∫ b

a
f ′(st) ds

)
.

We now use the identity f ′(st) = f ′(0) + s
∫ t

0 f
′′(rs) dr and then exchange the

order of integrals, so that

I = at

∫ t

0

(1

a

∫ a

0
sf ′′(rs) ds− 1

δ

∫ b

a
sf ′′(rs) ds

)
dr .

The first claim now follows by replacing the integrands by their suprema and using
the triangle inequality.

To show the bound (A.5), we make use of the identity

bf (at)− af (bt)
b− a

=
ab

b− a

∫ b

a

f (xt)− xtf ′(xt)
x2

dx .

Since
∫ b
a
dx
x2 = b−a

ab , the second claim then follows from the assumption.

Remark A.4 The constant 2 appearing in (A.4) could actually be improved to 3
2 .

Another extremely useful calculation is the following:

Lemma A.5 Let a, b > 0. Then, for every t, t′ ∈ R, one has∫ t

−∞

∫ t′

−∞
e−a|t−r|−a|t

′−r′|−b|r−r′| dr′ dr =
ae−b|t−t

′| − be−a|t−t′|

a(a2 − b2)

≤ 1

a(a+ b)
∧ e
−(a∧b)|t−t′|

a|a− b|
.

Proof. The first identity follows from a lengthy but straightforward calculation. The
fact that both |t− r| and |t′ − r′| have the same prefactor in the exponent is crucial
for the result, otherwise, the expression is far lengthier.

To get the bound on the second line, we first use Proposition A.3 to bound the
left hand side by 1/a(a + b) (the constant K appearing there is equal to 1 in our
case). It then suffices to observe that

|ae−b|t−t′| − be−a|t−t′|| ≤ (a+ b)e−(a∧b)|t−t′| ,

to obtain the second bound.

Another very useful bound is given by

Lemma A.6 For every s < t and u, v > 0, one has∫ t

s
e−u|x−s|−v|x−t| dx ≤ 4e−(u∧v)t

u+ v
≤ 4

u+ v
.
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Proof. One has the identity

I def
=

∫ t

s
e−u|x−s|−v|x−t| dx = eus−vt

∫ t

s
e(v−u)x dx =

e−u(t−s) − e−v(t−s)

v − u
.

Assume now without loss of generality that v > u. It then follows from the above
that

I ≤ e−u(t−s)

v − u
.

On the other hand, the integral can be estimated by the supremum of its integrand,
times the length of the domain of integration, so that

I ≤ (t− s)e−u(t−s) =
u(t− s)e−u(t−s)

u
≤ e−

u
2

(t−s)

u
,

where we made use of the fact that xe−x ≤ e−x/2. Combining these bounds, we
conclude that

I ≤ e−
u∧v

2
(t−s)

(u ∧ v) ∨ |u− v|
.

The claim now follows from the fact that (u∧ v)∨ |u− v| ≥ (u∨ v)/2 ≥ (u+ v)/4.

Lemma A.7 Let F : R → R be such that there exist constants K > 0 and b ≥ 0
such that

|F (s)| ≤ Ke−b|s| ,

and define

K(t− t′) def
=

∫ t

−∞

∫ t′

−∞
F (s− s′)e−a(t+t′−s−s′) ds′ ds .

Then, one has the bound

|K(δ)−K(0)| ≤ (1 ∧ aδ)
(
|K(0)|+ 4K

(a+ b)2

)
≤ 5K

1 ∧ aδ
a(a+ b)

.

Proof. By definition, one has

K(δ)−K(0) = (e−aδ − 1)K(0) +

∫ δ

0

∫ 0

−∞
F (s− s′)e−a(δ−s−s′) ds′ ds ,

so that it suffices to bound the second term in this expression. Since s > s′ over the
whole domain of integration, F is bounded by Ke−b(s−s

′), so that∣∣∣∫ 0

−∞
F (s− s′)e−a(δ−s−s′) ds′

∣∣∣ ≤ Ke−bs−a(δ−s)

a+ b
.

The first bound now follows from Lemma A.6, and the second bound follows from
Lemma A.5.
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Proposition A.8 The bound∫ s

−∞

∫ s′

−∞
exp(−a|r − r′| − b|r − s| − c|r′ − s′| − d|r − s′| − e|r′ − s|) dr′ dr

≤ 10e−(d∧e)|s−s′|

(b+ d)(c+ e) + a((b+ d) ∧ (c+ e))
,

holds for every s, s′ ∈ R and every a, b, c, d, e > 0.

Proof. Throughout, we denote the integrand by I(r, r′) and we write

R =
e−

d∧e
2
|s−s′|

(b+ d)(c+ e)
.

We can (and will from now on) assume without loss of generality that s′ > s, since
the case s > s′ is obtained by making the substitution (r, s, b, d)↔ (r′, s′, c, e) and
R is left unchanged by this. We decompose the integral over r′ into integrals over
(−∞, r], [r, s], and [s, s′]. The first one then yields∫ r

−∞
I(r, r′) dr′ =

e−(b+c+e)|r−s|−d|r−s′|

a+ c+ e
,

so that ∫ s

−∞

∫ r

−∞
I(r, r′) dr′ dr =

e−d|s−s
′|

(a+ c+ e)(b+ c+ d+ e)
≤ R .

In order to bound the second integral, we use the bound |r′ − s′| ≤ |r′ − s|, which
allows us to use Lemma A.6. This yields the bound∫ s

r
I(r, r′) dr′ ≤ 4e−b|r−s|−d|r−s

′|

a+ c+ e
,

so that ∫ s

−∞

∫ s

r
I(r, r′) dr′ ≤ 4e−d|s−s

′|

(a+ c+ e)(b+ d)
≤ 4R .

Similarly, we can use Lemma A.6 for the last integral, so that∫ s′

s
I(r, r′) dr′ ≤ 4e−b|r−s|−d|r−s

′|

a+ c+ e
,

yielding in the same way as before
∫ s
−∞

∫ s′
s I(r, r′) dr′ ≤ 4R. The claim now

follows at once.



USEFUL COMPUTATIONS 99

A.3 Function spaces

In this appendix, we collect a few useful facts about spaces of distributions with
“negative Hölder continuity”. Recall that if α, β > 0 and we have two functions
u ∈ Cα and v ∈ Cβ , then the product uv satisfies uv ∈ Cα∧β . We would like to
have a similar property for distributions in C−α for some α > 0.

In full generality, the above bounds does of course not hold: white noise belongs
to C−α for every α > 1

2 , but squaring it simply makes no sense whatsoever. However,
one has the following:

Proposition A.9 Let α ∈ (0, 1) and β > α. Then, the bilinear map (u, v) 7→ uv
extends to a continuous map from C−α × Cβ into C−α.

Proof. It suffices to show that, for u and v smooth, one has∫ y

x
u(z)v(z) dz ≤ |x− y|1−α‖u‖−α‖v‖β .

Writing U for a primitive of u, we can write∫ y

x
u(z)v(z) dz =

∫ y

x
δv(x, z) dU (z) + v(x) δU (x, y) .

It then follows from Young’s theory of integration [You36] that the first quantity
is bounded by |x− y|1+β−α‖v‖β‖U‖1−α, provided that β > α. Since the second
quantity is bounded by |x− y|1−α‖U‖1−α‖v‖∞, the claim follows at once.

Remark A.10 The condition β > α is sharp. Indeed, it is possible to construct
a counterexample showing that the multiplication operator cannot be extended to
C−

1
2 × C

1
2 .

Let us also collect the following properties of the heat semigroup:

Proposition A.11 Let Pt denote the heat semigroup on S1. Then, for every α < β
with α > −1 and β − α ≤ 2, one has the bounds

‖Ptu‖β . t
α−β

2 ‖u‖α , ‖Ptu− u‖α . t
β−α

2 ‖u‖β ,

where the proportionality constants are uniform over any interval (0, T ] with T > 0.

Proof. The statements are standard for positive Hölder exponents and follow imme-
diately from the scaling properties of the heat kernel. For negative exponents, they
then follow from the fact that Pt commutes with ∂x.
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